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CHAPTER 1

INTRODUCTION

With the recent trend toward digital processing of signals
and the advances in digital circuit technology, various digita! designs
of phase-locked loops have emerged. At recent conferences [[1 ], [ 2]
entire technical sessions have been devoted exclusively to digital
phase-locked loops.

The development of digital phase locked-loops has proceedec
similarly to the analog phase-locked loop development in that two bzsic
problems have been considered: tracki..g a carrier signal (or syachro-
nizing bit streams) and demodulating FM signals. Typical problems as-
sociated with carrier tracking are the mean time to gain lock, steady-
state phase error probability density, mean time to lose lock, and the
location of threshold. Analyses concerning FM demodulation concern
the loop performance based of signal-to noise calculations and the lo-
cation of threshold with a modulated input.

One method used to track a carrier involves varying the sampiing
time [3 ] in an attempt to lock on to the zero crossings. Another mcz-c.
(4 ] uses in-phase sampling and quadrature-phase sampling in orcer ©
determine phase error. In addition, these sampling rates are variable.
Other techniques [5 ], [6 ], which are not completely digital, require
mid-phase and in-phase integrations, followed by a multiplication in
urder to obtain phase error information.

One of th e carliest schemes for constructing a digital phase-lockad
loop for FM demodulation [7 ] employed a voltage cuntrolled oscillator
(VCO) using shift registers and a gate which detects when a certain aum-
ber of pulses are counted. The phase error sighal is obtainsu using en
exclusive-or gate whose inputs are the VCO output and a ki‘src{—limited
version of the input. The input to such a digital p.\ase-locked loop dacs
not consist of a sampled signal, but rather the hard limited form of the

FM signal, which provides information about its zero crossings. Other
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digital techniques [8 ], [9 1, [10 Juse uniform samples of the FM

signal but require a voltage controlled oscillator and multiplier for phase
detection. The performance of these systems was obtained by computer
simulation. it is also possible to use a variable sampling frequency _i1:
to demodulate FM.

It is interesting to note the digital phase-locked loop progress
being made abroad. In Japan, hybrid systems have been studied [12 3
(13 ] in which the sampling process occurs after the phase detector, and
the digital signal converted back into analog form to drive a voitage-
controlled oscillator. Such phase-locked loops witf\ sampled-data coairol
were the forerunners to the all digital phase-locked loops currently being
investigated.

The digital phase-locked loop presented in this thesis operates as
a (nonlinear) digital filter: the input is the uniform sample seguence of
the FM signal and the output is the sample sequence of the demodulated
message. All operations within the loop are digital: gating, storing in
registers, shifting, adding binary words, and the VOO algorithm. Furtrer-
more, the system is designed so that it operates on the input secuence in
real-time, requiring all the digital operations to be perfermed within the
sampling period. This feature enables the digital phase-locked loop to
be constructed and tested using actual modulation, instead of & computer
simulation. Since the digital phase-locked loop is designed using stan-
dard logic operations, it can be constructed using LSI, with its advantages
of low cost and high reliability.

The structure of the digital phase-locked loop presented in this
thesis is similar to that of an analog phase-locked lonp: the phase =rror
between input and VCO is gene.ated by taking the prcduct of these tw»
signals, and this error signal is process ed by a digital filter. Two dis-
tinguishing features of this digital phase-locked loop are the real-time
and synchronous operation. The restriction of real-time operation places

limitations on the number and type of digital calculations allowable, as



well as placing an upper limit on the sampling irequency, as all
computatiors must be performed with one sampling veriod. As a re-

suit, it is necessary to sample the IF FM signal at a frequency below
the IF frequency; the permissible sampling frequencies for this sub-
sampling process are examined in Ch. 2. A second consequence of
real-time operation is the preclusion of digital mu'tipliers, as digital
multiplication requires excessive computat” time Tience all gains
appearing :n the digital phase-locked loop wre rowei.. of 1/2, which
are realized by shifting a binarr word. However. we must still cconstric:
a phase detector without using a binary multiplication.

The solution to the phase detector problem is to use & vo‘:tagg
controlled oscillator whose wave form is a square wave, having the
values 1. Then the binary multiplication of the input bv.the VCO signal
reduces to a logic operation: the bits of the input word are exclusive-
-r gated by the VCO output. Since the VCC output is requirad only at
the sampling times, an actual oscillator (or counter) is not present in
the system; instead, an algorithm is developed which determines the
correct VCO output at the sampling time given all the previous VCO in-
puts. This .algorithm is realized as a logic operation which requirzs
negligible computation time.

Although using a square wave VCO makes real-time operation poss-
ibile, the square wave introduces undesirable harmonics into the digital
phase-locked loop. It is impossible to have all of these harmonics fall
outside the loop bandwidth bec.ause ot the frequency aliasing procucec =y
'sampling. In order that these harmonics have a minimum effect on the
loop operation, a design condition is derived. The hammonic contribution
to the output is also calculated.

The digital phase-locked loop internal arithmetic is performec
with a finite number of bits and therefore quantizé¢:ion noise is present.

An examination of the quantization noise at tha orror signal leads 0 «
second design equation for the loop.

The original motivation for designing a digital phase-locked locp

3



was to obtain threshold extension over & discriminator. Co:-suier

&

analyses of analog phase-locked loops (14 1 predicted up to scven
dB threshold extension with a third order loop. In order to obtain an
indication of the digital phase-lucked loop performance nea. ~ircshoig,
a deterministic model for an inp.it noise spike is introduced to the loop
equation, which is solved on a general-purpose digital computer, ana
" the result examinad to see whether or not the digital phase-locked oop
follows the i..put spike. Although this method cannct predict the abso-
lute location of threshold, it does give a relative peric mance measure
between the first, second, and third order digital phase-locked loops.
The digital phase-locked loops were constructed using DTL and
TTL logic cards and tested with sinusoidal and constant modulation.
It is found that the first order loop threshold is identical to thzt of a

discriminator, the second order loop provides threshold extension over

the first order loop, and, most inportantly, the third order 1oop coes not

provide any threshold extension beyonc the second c:-der loop anc it can
degrade the performance. .nis important result i1z found to be causec ty
ths third order loop losing lock temporarily in response to an input noise
spike.

In addition.to the experimenta determ; . O thresno. &, the «ifect
of the aumber of iﬁts used and the resulting .-ur~zation cn the threshoid
is determined experimentally. It is found that if the s‘ampl‘-d input signal
is coded into a three-bit binary word, threshold is five dB worse than icor
coding into a ten-bit binary word. The result of truncating to ten bits all

binary words in the loop is to lose one dB in threshold.



CHAPTER 2

THE ALL DIGITAL PHASE-LOCKED LOQP

In this chapter, the structure of the digital phase~locked loop
is developed, with particular attention to the real-time operation
of the system. The restriction that the unit operate in real-time places
limitations on the sampling frequency and on the number and type of
calculations performed by the loop. As a result, a computationally
simple algor’’ 1m is developed to represent a square wave voltage-
controlled oscillator; but although the algorithm is simple, the
square wave introduces harmonics into the loop. A conditicn which
minimizes the harmonic contribution is developed, and it serves as
a design equation. A second disign equation involving quantization
noise is introduced conceming the maximum phase error allowable in
the digital phase-locked loop.

2.1 Digital Phase-locked Loop Structure
The block diagram of the all digita! phase-locked loop (DPLL)

is shown in Fig. 2.1-1. The received noisy FM signal is btand-pass:
filtered, yielding x (3 ), sampled, and converted to a binary word,

X . From this point on, 21l signals in the DPLL appear as binary
words. The DPLL error signal, e is the product of the input X, and
the digital voltage controlled oscillator (VCO) output Wy . Digital
filtering Of this error signal yields the loop output, Vi s which in turn

determines the new VCO output, w. . The particular diai. al filters

considered are a proportional path,.ﬁr.)i’oportional plus {itegral paths,
and oroportional plus integral plus doublc integral paths, yielding
first, second, and third order DPLL*s respectively. The DPLL output
is sonverted to a sta.rcase signal by a digital-to analog (D/A) con~
verter and low péss filtered to produce the analog output, y (t).

The digita! pha.e-iocked loop is d¢ signed to operate as a real-
tima computer, requiring all calculations to be perfermed in one
sampling period. This requirement places restrictions on the number

and type of arithmetic operations possihle, and on the sampling frequerncy.
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2.2 Determination of Sampling Frequency
The digital phase-locked loops were constructed using DTL
ad TTL logic, having speeds of 1 MHz and 10 MHz respectively.
Allowing for ten logic operations per computation interval (which is
equal to the sampling period), the sampling frequency must be less
than 1/ (10 * 1usec) = 100 KHz. Therefore it is impossible to sample
the bandpass signal x(t) (Fig. 2.1-1) at the Nyquist rate or greater.
It is, however, possible to sample the bandpass signal below the
Nyquist rate without losing any information. Let x(t) occupy a
bandwidth B Hz centered about fo Hz, as shown in Fig. 2.2-1a. Then
it can be shcwn [ 14 that an allowable sampling rate is:

£ = 2B (2. 2-13)

€ = + -
nf, = f *B/2 (2.2-1b)

There are,other possible smapling frequencies. To obtain them,
first consider »(t) sampled at twice the highest frequency component:
f; = 2 (fo + B/2). The sampled spectrum appears in Fig. 2.2-1b. If
the sampling frequency is reduced slightly, spectral overiap occurs.
But if we continue reducing fs' we reach the situation of Fig. 2.2-1c¢,
where fs = 2 (fo - B/2) and no overlap is present. It is possible
now to reduce fs until the arrangement of Fig. 2.2-1d appears, where
fs = fo + B/2. Hence, fs can fall anywhere within the interval

L(f, + B/2), 2(1, - B/2) ]

Further reduction of fs yields overlap, until we reach the situation
of Fig 2.2-1e; here f_= f - B/2. We can continue to reduce f_ until
Fig. 2.2-1f results with fs = 2(fo + B/2)/3. Therefore, the sampling
fiequency may fall anywhere i-. the interval

L 2(f, +B/2)/3, (f, -B/2)]

Continuing this process, the next allowable sampling frequency is
£ = 2(f, - B/2)/3 snownin Fic. 2.2-1g, and f_ may be reduced until
foo=2(f + B/2)/4 as in Fig 2.2-1h, yielding the interval
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[2(:0 *+ Bf2)/4, 2(f - B/2)/3]

The generalization of this procedure is that the sampling frequency
must fall in the interval

[ —2— (£ + B/2), 21, - n/z)] . (2:2-2)
with K an integer, for no spectral overlap to occur. Of course, we
must also have fs 2 2B. Notice that the values of fs specified by
£q. (2.2~1b) are included in the endpoints of the intervals of Eq. (2.2-2).
Summarizing the above, iIf x(t) is a bandpass signal occupying a
bandwidth B Hz centerec about fo Hz, then x(t) is specified completely
by its sample values at instants t = ic/fs where

fs 2 2B (2.2-33)
2
£ e[-i-(fo+B/2). co) U
2 2
[2 (f, + B/2), T(f, - Bla)] U

2 2
[3 (£, + B/2), (£, - B/z)] U

[n—f;(fo +8/2), (s, - B/z)] U

(2! 2-3Db}
The important conclusion is that it is possible to sample x(t) at a
rate slower than the carrier frequency £ '
For ease in implementation, we shall sample according to
fs = 2Bm (2.2-43a)
n.fs = fo - B/2 (2.2-4b)
where m and n are positive integers; together, these imply
f/f, =n + 1/4m (2.2-5)

9



Using m = 1 in Egs. (2.2-4) leads to an iateresting interpre-

tation. Writing the bandpass signal x(t) as
x(t) = alt)cos Zﬂfot + Db(t) sin 2ﬂf°t (2.2-6)

where a(t) and b(t) are bandlimited to B/2 Hz, the sample values
are, using Eq. (2.2-5)

x(kT ) = a(kT )cosk@/2 + b(kT )sink7/2 (2.2-7)
Note that if k is an even integer, k = 2p,

x(2pT,) = (-1)"a(2p1‘s) + 0 (2.2-8)
and if k is an odd integer, k = 2p -+ 1,

x[(2p + 1)T] = 0 + (-1)® b{(2p + 1)T,] (2.2-9)

Hence the even numbered samples provide information for reconstruc-
ting s(t), since the Nyéuist rate for aft) is 2(B/2) = £ /2, while the
odd numbered samples provide information for reconstructing b(t).

Having determined a(t) and b(t), x(t) is determined via Eq. {2.2-6).

2.3 The Digital Voltage Controlled Oscillator
A voltage controlled oscillator (VCO) is an oscillator whose frequency

deviatiox from its nominal frequency is proportional to the input:

w(t) = g(2mf t + Gvcojt y(T) dT (2‘3_i)
where y(t) = VCO input -
w(t) = VCO output
f, = VCO nominal frequency
g{-) = VCO waveform, with g(x + 27 = g(x)

Gyco = VCO galn, in (rad/sec)/vol:.

In the digital phase-locked loop we are interested solely in the VCO
output at thc sampling instants since only these valucs are requirced
for the computations. The VCO output at the sampling instant t= kT s

10



is, usiag Eq. (2.2-3) kT
[
w(k'l‘s) = w = g(km/2m + vajmy(n dT) (2.3-2)

Siace we have y({ k'l‘s) = Y available, as opposed to y(t), the
integration is performed digitally as a summation:

k-1
w, = g(kw/2m + z Y. ) {2.3-3)
k Gvoo p=-w P

Note that the summation extends onlyupto p=k-1; thisis a
consequance of the causality of the digital filter. Defining the VCO
phase by

k-1
3 = GVOO E-wyp {2.3-4)

we obtain the recursive relation
% ~ %-1 T ScoYk-1 (2.3-5)

and the VCO ouiput is

= g(k7/2m + & (2.3-5)

X k)

Fig. 2. 3-1; illustrates the wmputaﬁons required to generate the
VCO output. The VCO input Yy (identical to the DPLL output) is scaled
by G\' 0 and digitally integrated (or accumulated), forming the VCO
phase 6k » which is then added to the carrier term, k /2m. And then
the VCO waveform g (-) must be evaluated.

We can avoid the need for calculat'ng the carrier term ki /2m by
recognizing that

S k=1 _
knf2m + & + z voo Yk
p=0
. k-1
= B+ E’ao (T/2m + Gyog V) (2:3-T)

That is, the carrier term may be obtained by int: rating the constant
k7/2m. Hence, we may modify Fig. 2.3-1 to Fig. 2.3-2, which is com-
putationally simpler, as now only a constant term is added at each
calculation.

11
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The next task is to choose the VCO waveform, g (-). Two
factors are important here: the complexity of the g (-.) computation
and the multiplication of the VCO output and the DPLL input.

The function computation must be sufficiently brief as it must be
performed within the computation interval. This can be accomplished
using a read only memory (ROM). The function argument is used to

.address the ROM which is preprogrammed with the function values.
A typical access time is 22 nsec using TTL.

The function values determine the complexity of the digitz! mul-
tiplication required. For, if the VCO output can assume any value :
(i.e., any of the discrete quantized values), as is the case for g(x)=3inx,

then fhe digital multiplier must be able to multiply two arbitrary binary
numbers, an operastion which more computation time than is available.
One solution to this problem is to utilize a. ROM: the binary words to
be multiplied are used . address the ROM, by concatenating the two
words, for example, and the ROM stores the product at this address. This
scheme, however, is made impractical by the memory capacity require 2.
For example, if we are working with 10-bit arithmetic, there are
.2 10. 2 10 > 10 6. possible products to compute, and hence the ROM
must store one million 10-bit words;

A solution to the multiplication problem is to choose the VCO wave-

form g (-) to be a square wave, having only values *1:

+1, 0 Sx =W

g(x) = Sq(x) = {

g(x) = g(x + 2m) (2.3-8)

Hence the binary multiplication is reduced to a sirzle logic operation:

if g(x) = + 1, pass the input with no change; if ¢{x} = - 1, form the “one’s
complement” (or whatever negative arifhmgtlc is used) of the input. This
operation is accomplished using exclusive-or gates and sufficient compu~
tation time is available.

14



To complete the digital VCO design, we must specify now g {+)

is computed.

2.4 Digital VCO Algorithm

Having decided that the VCO outputs are limited to %1, we must

now determine which of the two is correct, given the VCO argument,

kKvf2m + @, . That is, we must determine whether the VGO argument

falls in the ix):terval {0,m or [ 27). Moreover, the intervals are
considered modulo 27 to account for the periodicity of g{-}. But the
binary numbers gfoup themselves naturally as a result cf the pattemn of
ones and zeros. For example, if we look at a list of the binaryf numbers
from 0 to 7,"shown in Table 2.4-1, and focus attention on the second
digit, we immediately see that this digit partitions the orginal numbers
into groups of two. Furthermore, we can arbitrarily say thet the {i#st
group representsAthe fo, W) interval, the next group represents the
{m 2m) interval, the next group represents the L[2mw, 27) interval,
and so on. In fact, if the list of binary numbers is continuec above 7.
the same identification can be madé using the second bit, since thiz i
always exhibifs a periodic pattern. Furthermore, if we consider negative
numbers using offset binary, ii.> same idehtiﬁcation can ke made, as is
seen in Table 2.4-2. There is an ambiguity at zero since there are two
binary representations of zero and hence the VCO output depends on hew
the value 7zero is approached. But this difriculty is minor, as the VCO
argument will rarely be exactly zero.

Therefore, the VCO output is determined by one bit of the binarv
word representing the VCO argument; if thic bit is a 0, the VCO outpit
is +1; if this bit is a 1, the VCO output is - 1. 2l=, to allow for the
periodicity in Sq(-), the adder used to integ-zte the VCO input is &llcuw-
ed to overflow. The particular bit used tc ¢ atgrmine the VCO output
fixes the VCO gain. Above we used the 2's’ place digit--hence the in-
terval [0, 2') corresponds to the interval { 0, ™}, producing the gain

15



Binary Numbers, 0 to 7 2's Place Digit

111
110
101
100
011
010
001
000 L

CQ e e O O e

Table 2.4- 1. The binary numbers and their two's place digit

Decimal No. - Offset Binery No. 2°s Place Digit

+ 17 1111 1
6 1110 ] 1
5 1101 0
4 1100 0
3 1011 1
2 1010 - 1
1 1001 0
o {1000 0
0111 1

-1 0110 1
-2 0101 c
-3 0100 0
-4 0011 1
~5 0010 i
-6 0001 . 0
-1 0000 0

Table 2.4-2. The offset binary numbers and their two's place digit.

16



w/2' (rad/sec)/binary number. If the quantization step size is §
volts, the VCO gain is w/2t g (rad/oe\,)/vol‘. In generai, using Lhe
20 pxae_e digit produces the gain 7/ § 2 I (rad /sec)/voli.
T - ’\!ote‘;l';q,. this cain is impliciily introcduced by the 1(+} czalcula~
tion and so the VCO gain is 1ot accurately presented in Fig. 3~2.
Fig. 2.4-1 corrects the situe ‘ioz;, where both an explicit gain, g-. :~as, h

weil as the implicit gain g; are shown. The VCG.gain inclucdes do:h: .

GVCO=91'92

Note that we must now add the constant T/ 2m with the implicit gain
removed; hence we add the term (7/2m) /ga. Also note that the out-
put is Iabe_led Bn » the 2" bit of the integrator binary word. Tre VCO

output w is determined from Bn via

+1, B 0
n

W, =
n

If m is a power of 2, the term (7/2m)/ gy is simply -epresented. For
example, if the VCO output is determined by the 24 bit (n = 4) then

m/g3 = 10000

m/2g, = 01000

n/4g, = 00100
m/8gs = 00010
m/16g,= 00001 .

Of course, it is also possible to obtain valu.zs which are combina-

tions of the above, such as
m/(8/)gs = W/ 2gy + ™/8g, = 01010.

Finally, in constructing the DPLL the VCO output wk = %] is never

actually generated. Instead, the Bn bit is used directly to prccess the

17
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input binary. For if either one's conplement or offset binary arithmetic

is employed, then negating a binary word is equivalent to compiemeniii.,

- it. Hence the B_l bit can gate each bit of the zut through an exciusive-
Y

or gate, as shown in I-‘i'g. 2.4-2. If B =0. gate cutput is identical
to the input (a multiplication by +1) v»bu - Bn = 1, the gate ocutput
is the complement of Lhe inp.t (& multipli :aticn by ~1). Fence the mul-

tiplier output is indeed w, - x, . Of course, if twoe's compler-at

arithr: “ic were erxxpk)yecl,k the ex:lusive-or gating operaticn must be
modified. -

Summenzlng. w;ve See *hat one bit of the VCO crgument seivas to de~
termine the VCO outpui.. and the particular bit usec determines tne implicit
VOO gam " The product of DPLL mput and VCC output is realized as an

e)cclusi. s-or gating operation, requiring nesgligivle computaticn time.

2 5 Demgn Cons:.deratlons--’\/laxzmum Error_Signal
*In order for the DPLI. to demodulate witnout distonion, the arrar

sagnal e. in Pil' 2.1-1, must be an accurate measure of the phasc error.

k
I:etween the. input and VCO. The product of input signal anc VCC cutpuat

- yields the term, sie(®, - ¥, ), and therefore the difference @, - &,
must be kept muck less than 7/ 2 to have e, = ©, - 1’5‘( 3 the smalier

thxs phase error. the better is the approximation. However, e. is repre-

. sented by a binary word having a fixed number of »it3, and “ecreasing

: its range of values Jeteriorates the si- il-tc-quantization nolse ratio.

Hence a trade-off exists between the accuracy or the approximaiiin
Let the system A/D converter code analog siqnals amplitude iimitea

and the signal-to-quantization ncise ratic.

to V volts into B-bit binary numbers, producing 3 Juantization step size

S:

s = 2‘.1/2B (2.5-1)
Let trie phase difference ©, - &'k range over 2M of these leve.s:

o, - & [=wMs 052
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Fig. 2.4-2, The mcclusive—or Saling of the ins
Produce the Product -.:-k- x)c
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S
No o= s/ (2.3=5)
S Ayl 3 al mAIeT S o
enl e signal power is ...
A -
. A )2 - 1 <" (@ 2 AR IVZNEIST (-).5_4)
ST, =3 L= - - L, = - Z z
\Vk X 2:\-? s a=a\g 9

Py 2 3 I
iz G NOise reito i then

Tae signal-~to-guantizetio
) (2.5-5)

icn sia(o. -3 )*@k-c‘;k,tha

A3 a reswt of the aogroximaticn sin

nharmonic noise intrsduced is

R .o -2
Nd—:.:\ \Vk""-:)~5~a(¢“—;’k)4)a
M
2 <« . 2 o = o~
= SMe1 “ (nS - sinnS§) {2.5-3)
==

and the signal-to-harmonic noise is

S _ _M(M+1)(2M+1)§°% o = o
N v . (2.2-73
3 Z (nS-sinns)

n=-M

Egs. (2.5-5) and (2.5-7) are plotted ia Figs. 2.5-i and £.5-2 as a
function of the maximum phase difference, MS, for the case of an A/D

converter which accests =5 velis maximun and uses 1C and 12 riss
TreUvEs

respectively. as expected, the signal-to-quantization neise ratio iz

when the signal range increases, while the signal-to-harmonic aocise relio
£z phase-locked loogs

deteriorates for increasing signa! range. The Cit
are designcc so that these two ratios are equz’. Frex Pigs. 2.5-1 ang 2.5~-2

the maximum allowable phase errors are:

21
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N. mber of Bits l(aximnm Phase Exror
10 0.35
12 0.23

Table 2.5~1

The maximum allowable phase arror dlaces axesttictionbntheloop
gains a3 will be seen in the following chaptsr.

” _;_s; Desisy. Jcasiderations--VCO Harmonies
 Kithough the square wavs furcidon 6f EC [2.3-8) adopted for the
mewasimplemumalalgawm it has the disadvantage
- of introducing hermonics into the DPLL. Por the function Sq(x) has the
“Pourier serles
1

Sq(x) = -[dnx + s-slnSx + —sinSx 4 “eee 4

1 T oL
2n_l_lsm(Zn-l-l,x1---- 2 (2.8-0)

"andtheuoma 2008 [ 21  t+@(t)18q (2w t+ &(t; 1 generates
~ hmmnonics at £=0, 2f, 41, 68 ..., 2Pf, .. .. Now in an azalog
| phaseolockedloop.theselmrmonicswmldbesufﬂcienﬂyattenaatec
bytheloopﬁlterwﬂnmnmgraﬁon. However, iu the cigitai phascz
. bckedloop.thesamﬂ.twmcessshzﬁstheseﬁequeacies,andevent -----
" a harmonic will be folded (aliased) into the loop bandwidth. Since
f,= (n+1fém)f, . the froquency f, gsts aliased to £ /4m, and thereiore
: mmmmwu '

o, £/2m, 28 IZm.....pf /2w, ... Hz.

-
l

Butthefreqnsncyf uemnvaleuttozaafrequancyandsothe 2m
‘hamonlclsanuedﬁod.c.,falnngwahmtheloopbandw;dm. The pro-
. ducts

[-2003 (kﬂlzm + Ok)] mzﬁn [k (4m-1)T /2m+ (4m-1)P X _-1, R

and



{‘-2008 (xm ]m +90 sin [k(mlwzm + (4m+1):pk] (2.6-20)

O sasny

gonerate this 2mth hamonicwhlchis

2 {Zf'i sin [ {am-1)® xt O+ ooysin [ (wnék ®, ] } (2.6-3)

rf:hemopxsﬁoummmemmmdmm then&
ampktudeoithis zm harmonic is spproximately

k ang the

4 __32m
{ * mJ . n(u.'ﬁ‘—:z)

mmmsmwsm m should be made large in order
mmmmmm@mmmmwxa N
theloopst&ddmam m.tbemlﬂpnarom&zs*harmonic
isatf=i/2m.andMaﬂngmemsestbisharmonictofanw*thm
theD?I.medwldth. Astheamplfnﬂaoftheﬁrstharmonicisappro:d-
mately 4(1-&1[3)[1!3 lslm.tmtheﬁrsthmmicthatposes the
greater threat of 1oop malfunction then the 2m' " harmonic. If the input
_modmaﬁonmdnces aﬁeqmdsﬂaﬂen Asz.thenthisﬁrstha:mu'z-
wmaﬁe@mym&a@mmly(asmmmgqﬂ & fpk)zb‘

wmmmammmmmmemopbmmdm. '
BL.weme . »

(i'sfzm) - 23Af 2 By (2.6~4)

Eq. (2.6~4) and Table 2.5~1 form the basis of design of the first
order phase-locked loop, Chapter 3. Cousideration of the DPLL's re—
8ponsetoluputspﬂ:esthsn nllcwa deeignofthe second and third order
DPTL's, in Chapters 4 and 5.

2.7 Linearized Model of the DPLL
While the use of a square wave VCO simplifies the DPLL irplemenia~

tion, it introduces a severe nonlinearity into the DPLL difference equaticn,

making it impossible to solve exaotly exoept in a limited number of

a5



special cases (the first order DPLL equation is solved in Ch. 3 when the
input carrier is unmodulated). We therefore introduce a linearized model,
developed on tha basis of the design conditions of Sections 2.5 and 2.6.
The product of input carrier and square wave VOO generates harmonics

a 0; fslzp. 2fs/2m.....pfs[2m....ux.w1th p an integer. Of
these harmoanics, only the d.c. term contains information about the phase
error between inpat and VOO, and ideally, this shou'1 be the only term

present. Eq. (2.6~4) stipulated that the additional harmonics fall cutside
tneDPLI.banﬂwm Asmaviouslyobsavad the sampling process folds
the 2m™ harmoatc to d.¢.; also, this 2m™ harmonic has an amplitude
of appraximstely - an/nsm* 1) (mlauvemthed.c. term). Hence, to
Mnammzedmdelwemayneglectauﬁwharmicsmptthe

first, so that
o * Tam(o, -9) . @11

Purﬂxetwe.thephasediﬁe:me (qik-ﬁk) is res tricted according to
Table 2.6-1, and we therefore can further approximate:

e,f:"'* 3-(¢k-$ ) (2.7-2)

Using Eq. (2.7-2).theMzedmodelofthe DPLL appears in Fig. 2.7-1.

Notethattheinputtotheuwanzedmodelistheinmtphase. Qk
"hesupptessingoftheharmnicsissuppoxtedbythesquarewave

" nature of the VCO; if the VCO argument lies anywhere in the {o,m

mtelval.thevmmmua-l-l. Therefore, although the true VCO phase

isrex‘turbedﬁomthatlnthenneauzedmodel the VCO output sequence may

still be identical.

2.8 Hardware Congiderstions

The digital phase-locked loops designed were coastructed using
commaercially aveilahle DTL and TTL logic cards. As previously men-
tioned, all computations are performed within one sampling period, which
is chosen to bs 20 usec to accomcdate the logic speed. All computations

are performed in parallel form.
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Tae A/D converter employad generates words in ofiset binary
form: the most significant bit is the sign bit which is a 1 for positive
voltagos; negative voltages are represented by the complement of the
carresponding positive voltage word. There are two representations of
zero volts: +0 = 100...0; -0 = 011...1. Table 2.8-1 illustrates the
oiiset binary words obtained when tke input voltage is between -7 and
+7 volts; for simplicity only 4 bits are used. The A/D converter used
in the DPLL converts voltages between -5 and +35 volts into 10-bit

offset binary words. '

2.8.1 Multiplicstion by 1/2° _
_.To avold a binary multiplication (which is excessive in computation

time) all gains appearing in the DPLL are chosen to be powers of 1/2.

As a result, the multiplication operation becomes a shifting operatién,
shifting the binary word once for each factor of 1/2. However, cave must
be taken in performing this shifting operation: The sign bit must NOT be
shiﬁed.anﬂ:hebitswhichﬁeoomevacantmnstheﬁnedwtththeoomﬁle-
ment of the sign bit. For example, _

i.(.,.“ - %(1100) = 1001.00

1 1 .
£ (-4) = F(0011) = 0110.11

(if the answer is allotted only four bits, then the two bits to the right of
the binary point are dropped. We shall see later that in the DPLL's
designed here these bit_é are not dropped from the answer.)

2.8.2 Adcition Algorithm

In order to correctly add two offset binary words, an algorithm is
required. Let the two N-bii words to be added be denoted by
A= a1 1, ...aN and B = blbz...bw.wlth al and blthc
sign bit. The algorithm consists of the following steps:

28



Voltage Levels (volis) Offset Binary Word

o+

~ N Wy O =)

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010

0001

0000

Table 2.8-1. Nlustrating offset binary coding.
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1. Jorm the ordinary binary sum A+ B = €3C:C ...cN.where

172

¢, = the sign bit carmry.
2. Usc the carry into the sign bit as an end-around carry, res ulting
in the new sum dod1d2“‘dN' .
3. The answer in offset binary is obtained by deleting the digit d 13

A+B = dOd2d3“'dN°

Saveral examples will elucidate the algorithm:

Example 2.8-1 +3 = 1011
+2 = 1010
Step 1._ o,cany into sign bit

1011
ig10
10101

Step 2. 10101
—_20
10101

Step 3. Answer = 1101 = +5

Example 2.8-2 +3 = 1011
-2 =0101
Step 1. l,écan'y into sign bit

1011
0101

Step 2.

10001

Step 3. Answer = 1001 = +1

2.8.3 Arithmetic Saturation

If two numbers whose sum exceeds the voitage range are addsd using
the above algorithm, an erroneous resulf occurs, referred to as overilow.
For example, +4+6 = 1100 + 1110 = 1011 (using the algorithm)

but 1011 = +3,
30



s linear digital filters it is possible for overilow to generate limit
cyclas, which can be eliminated by having the addition process saturatel 16 ]
The DPLL is a nonlinear digital filter, and to prevent the possibility of
limit cycles, the arithmetic is modified to include positive and negative
saturation whea the <um exceeds the allowable limit.

Ticst, we must detect when overfiow occurs, and whether it is positive
or acgative. No‘.:e that overflow can never occur when adding numbers oi
opposite sign. When two positive numbers are added, the sign bit canry is
1; 1f in addition, overflow occurs, the carry into the sign bit is also a 1.
Hencsa positive overfiow occurs when both of these carries are 1. Adding
two negative numbers always ptoduces a 0 sign bit carnty, ancé overflow
produces a 0 cany intuthe sign bit; henrce negative overflow occurs when

i both these carries are 0. These two conditions are easily detected using
nand gates, as shown in Fig. 2.8-1. ‘

Having determined an overflow situation, we may generate the most
»ositive or most negative number, whichever is required. The adder plus
saturation processing is shown in Fig. 2.8-2, where the adder is foliowed
by a storage register and a bank of nand gates. The invertec output of the
storage register is used; heace R = the complement of whatever is stored.
The negative overflow signal is inverted and used te reset the register; the
positive overflow signal gates every bit through a nand gate.

'~ When no overflow occurs, N = P= 1, and the register is not reset.
The register stores C and its output is C, each bit is complemented by
the nand gates producing Y= C = C.

When positive overflow occurs, P = 0 (N = 1) and the nand gate
output is Y = 1111, the maximum positive voltage, regardles s of the
register output. )

When negative overflow occurs, N = 0, P = 1 and the register is
reset to zero, producing R = 1111, The nand gates invert this producing
Y = 0000, the most negative voltage.

31



raom.nmwo oajlebou pue sajlsod Buploalep 103 01601 posinbai 8yl °1-8°'¢ °61d

(/m01243A0

3

. 3AILVOIN) N o

(MOT4HIA0

IALLISOY) d

N 441 SMNDD0 MOT4¥IA0 3AILY9aAN

d 441 SYNOI0 MOTJYINO 3ALISOd

"

(]
(]

- 118 N9IS OINI A¥YVI

o AUYVI 118 NOIS

31RA



‘Bugsse~nad uopiRInies oyl Buiphifdur atempiey uorippe Aweurq ol °*2-8°'2 ‘614

(d) MOTIIYIAO0 3ALLISOd

. ~ommmtng e O
otl'lom_ o :
. . . ¢ o e’ 4
L . = —
S . d43..S1934 ‘ 4344V o
o———<(_| ﬁ
\ o = — :
a I9VHCLS AuVNIG |
— , —
S3Lv9 : .
‘ . 1383y

(N)
MOJUIA0 3IAILYOIN

)

82



2.8.4 VO Qverfiow

Tae VOO algorizhm was davelcsed in Sec. 2.4 where it was coacludod
that the VOO iniegrator must be allowed to overflow in order to realize the
pariodicity of the square wave function, $G{.). This means that if, for
examr.e, we are working with =7 voits maximum, the adcition must be per-
formec oa a modwlo 8 basis.

iel us examine the addition algorithun of Sec 2.8.2 by addiag +5 and
+4, The result should be

+5+4 = +1 mod 8 {2.8-1)
The addition algorithm, without saturation of course, yields

- 1———‘

+5 = 1101

+4 = 1120
11001

11010

 ¥3+4 = 11010 = +2
Note that the answer is too large. In fact, the addition s'gorithm will
aiways generate a larger result because the overflow (the carry into the
siga bit) is the end around canty. Hence to achieve the correct overflow
" sum, we must prevent the end around carry operation.
Naxt, considaer the sum -5 ~4, whose sum is

~5-4 = =1 mod 8

The addition algorithm yields

0
-5 = 0010 !

-4 = 0011
00101
. 0
00101

-5-4 = 0101 = -2
Here, the difficulty is that the end around carry is a zcro, when it should be
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3 one. This will always be the case for negative overflow beczuse the
cperation ~A -3 isrealiythe sum (1111 -A)+ (1111 - B)
= 11110 - A - B, and for negative overflow the end around carry is zero,
50 thel our result is different irom the correct resuit, 1111i-A - B.
Taerefore, to obtaia a somrect result for the VOO integration {additior),
it is necessary to make two modifications in the existing addition process.
First, the saturation hardware must be 2lirinated. Second, the end around
carry aust be complemented wheaever cverZiow is detected. The ernd asound
carry modification may be simplified by noting that under normal ioop opera-
tion tze VCO integrator will never overiiow negatively, since the positive
nunber W/ 2m is added at each computation. Hence, the end around cany
may be set to zero for all VOO computations.
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CHAPTER 3

TH: F.. 3T ORDER DIGITAL PZASE-LOCKED LOO?P

—————

3.1 T:2 Tirst Order DPLL Equation
Tae first order digital phase-locked 100D is shown in Fig. 3.1-1.
Reiferming to this figure, let the sampled M signal plus noise be de-
noted oy x:
x = —2oos(2ﬁfok‘rs + ck) + o (3.1-1)

where

fo = carrier frequency .

T s = sampling period

mk = {nput phase

n, = IF nolse

The reason for choosing the signai amplitude of 2 volts is seen below.
incorporating Eq. (2.2-5), we have

x, = -2cos(k7/2m + mk)A +n (3.1-2)

k

& = X W (3.1-3)
The DPLL output, Yo is simply proportional to the error for a first
order loop:

The e:Tor signal e is the product of the input and VOO output, w, :

= . 1= \
Y = 9 (8.1-4}

where g = forward loop gain. The VCO phase 6k is then
B = %% -1 ¥ Cyoo¥x-2 (3.1-5)

where GV co = VOO gain, which includes both any explicit scaling
of *he loop output, as well as the implicit gain irirocuced by the Sq(-)
algorithm, as explained in Ch. 2. Finally, the VCO output is

w, = Sq(k"/2m + O

. (3.1-6)

k)
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Com=ining Egs. (3.1-2) through (3.1-6), we obtain the equation for
x)
(3.1-7)

the VOO phase &k :
- 2Gcos (ki/2m + & )Sq(kY2m + &

61:
+Gn_Sq(kY/2m + &, )

& =
x+l
whara G = Gvodg = locp gein. TO bring this equation into a clearer

form, expand the Sq(-) function using a Pourier series
ot 1
~—— sin (2p+1)x

3
Safx) = = L —
and axpand the product of the fundamental component and the input

k)

FM signal. Thern
~2Gcos (k/2m + . )Sq(kif2m + 8, ) = LGsin(o, - 3
4
+ ﬂGsm(krrlzm+¢k+$k)

ouT S0 (2P+1 )Y 2m+ 8, )

=1

~2Gcos (k/2m + mk)% Z
P
&) (3.1-9)

Gsin(q -8,) + $Gh (v
The first tem is ameasureofthediscrepancybetv;eenthempmand

=R

VCO phases while hk is the contribution from the harmonics generated

by the square wave VCO. The DPLL equation is thus

) " ®k + %csm(ak - o) = Gn, Sq(kv/2m + &»k)
(3.1-10)

$k+
+Lcn (v, .0,
w k*k* 'k
The left side of this equation is the digitized version of a first

order analog loop, where the derivative is replacad by a difference:
(3.1~11)

%—gﬂ + Gmdogsm[cbm-m(:)]
mkﬂ-@k)/rs ¥ Ganalogsm(ﬁk-mk)
37



Ncze thict the corresponding analog loop gain is

4 .
G =2f G {3.1-12)

analog s

The factor 4 /T represents the Fourier coefficient of the square wave
Zundamental while the factor fs enters because computations in the
aigital loop ar: performed every sampling period, Ts.

The first order DPLL equation, Eq. (3.1-10), is a first order, non-
linear differen:e equation, whose solution is obtained under special
input conditions in Secs. 3.3 and 3.4.

3.2 Stability (Condition or the Loop Gain

A first order analog loop vossesses stable VCO states (phases)
for ary positive loop gain when the input carrier is unmodulated
(oks 0) and n0 noise is presem.: (nkz 0). For any initial VCO phase,
the VCO phase eventually settles to zero (modulo 27); the larger the loop
gain, the smaller the transient time required. The digital loop has difier-
ent restrictions.
~ First, consider the case shere the added harmonics h’k are not in-
cluded, yislding the equation

- _ - 4 o _
mkﬂ = Ok - “Gsinwk (3.2-1)

In order that $k—~ 0 for any initial value &o , we must have
(4/7)G < 2, as demonstrated in App. 1. Larger loop gains require smaller
transient times (where transient time is defined, for example, as the time
required for the VCO phase to be within 0.1 radian).

Now if the harmonics are included, the gain restriction changes, as it

is no longer possible to have @ - 0 in the steacy state. For example,

k
assume that @k = (; then

= Ge, = -2G(coskn/2m)(3qk"n/2m) (2.2-2)

Cr+1 " ak k

which is shown in Fig. 3.2~1 for the case m = 4, and when this integrated
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Fig. 3.2-1. Twe assumed DPLL error signal ek when both input and VCO
phase ars identically zero.

Fig. 3.2-2. The steady state error signal generated when the input
carrier is unmodulated. )
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to for: 5;‘,( , the result is not identically zero, as originally assumed.
Thereiore, more care must be takan in calculating the VCO phase.

Lssume that at k = 0, the VOO chase is zero: 50 = 0. Then

e, = -2c0s0-7/2m Sq(0-72m+ Q) = ~2-1 = -2

$1=m°+Geo=0-2G
Now the VCO output wl should be +1:
w, = Sq(1~w/2m+$1) = 8q(T/2m - 2G) = +1

Therefore
"2m - 2G 20

and
G=1/4m _ {3.2-3)

We shall see that this (in -addition to the obvious requirement G > 0) is
precisely the gain restriction for stability. Then

e, =(-2cos=./2m) e (+1)

and

%, = 0 -2G - 2GcosT/2m
implying
w, = Sq(27/2m - 2G - 2GcosT/2m) = +1
since

2w/2m > 2n/2m - 2G - 2GcosT/2m = (0/2m ~ 2G)+(1/2m - 2G cos 7/2m) >0

In fact, it follows that for 0 =k =< 2m, 'the VCO output is +1, since

k-1
@k = cpo + G E- -2cospTW/za
p=0
and
0 <kw/2m + § <m for 0 Sk<2m
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A Xx=2m+ 1, the VCO phasce is

2m
o~ < —
: o~ =23cospT/2m=0+0=0
=0

&

nd hence the VCO ourput is - 1:

4]

Woril Sg((2m+i)u/2m + 0) = -1

Similarly, the VCO output remains at -1 for 2m+1 =k =4m-1. Finsily,

at kK = 4m, the VCO phase is

2o £m-1

@, =% +G X -2cospu/2m + G &  (-1)(-2cosp~/2m) = 0
4m o) .
p=0 p=2m+i

ard the sequence repeats. The resuiting steady state curput is shown in
Tig.3.2-2 for the case m = 4; it is an eight-point seqﬁence io:lowed bv a
sevenpoint sequance, etc. Note that this signal has a zero average
value, while the sequence of Fig 3.2-1 does not.

Ti.e gain reswiction, Eq. (3.1-4) has another intarpretation: 't pre-
vents the VCO ottput from executiné two consecutive sign changes; i.z.,
it prever.ts VCO jitter. To illustrste this, note that the VCO argument &al-

ways increases:

A(k/2m + ?) =7/2m + bo = T/2m +Ge >7/2m - 2G 20

Therefore, if the VCO argument crosses froma -1 to a +1 interval, it
must remain in the +1 interval at least for the ~ext sample. In fact, trhe
most the argument can increase is 7/2m + T/2m = T/m, and hence the

VCO output remains + 1 for at least m samples.

Fig. 3.2-3 shows photographs of the D/A outr - ! the {irst order
DPLL for different loop gains. The DPLL nas un® .oward loop gain :
(¢ = 1) and an explicit VCO gair of 1/16; tr  .....c.t VCO gain was

varied, producing different icop gains. The A/D coaverter codes a =5

41



e — e — ——— —— — o— ——y

P —— e e —c———_—

(a) G= 1w/]20

—r— -
i - . - T e
2
i- - -— -
t o
T — - -—
; = : fapes -
§
e ~— - 2

(b) c= /[0

r h -
.. - [4
I =~ = = g
H = = o
s _ .
P ?
.o Ele - —_ i
- :
¢ - . H
H z - - !
: B - 3
LT -
* - -
1
) -

(c) 6= W/[s

Fig. 3.2-3. D/A outputs of a first order DPLL having loop gain G and
an unmodulated input carrier. e
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voit input signal into 10-bit binary words; the sampling frequency is
50 Kiiz and = 4.

Fig. 3.2-32 shows the emror signal when the VCO output is chosen
asing the third most significant bit of the VCO argument. Since this
bit carries the value 5/4 = 1.25 volts, the implicit VCO gain is 7/1.25
and t-2 loop gain is

G = (1/18) (7/1.25) = ©W/20

Note that this gain is less than the critizal gain, 7/4m = ©/16, and so
the DPLL should gernerate the sequence of Fig 3.2-2. Indeed, examining
Fig 3.2-3a we see exacily the antiéipated segeence: nine levels,follow-
" ed by seven levels, followed by nine levels, etc. The spikes seen on
the left side of some of the levels is a flaw in the D/A converter, not in
the D>LL. |
Next, in Fig 3.2-3b, the VCO ocutput is chosen using the fourth most

Y
-

significant bit, yielding an implicit gain of 7/G.§25 and a loop gain

‘G =T/10
which is greater than the critical gain and therefore should result in en
unstable DPLL. Fig. 3.2~3b bears this out: after two negative levels,
the VCO output changes sign, producing a positive level, arnd chaages
sign once again, generating a negative level. This is precisely the con-
secutive VCO sign changes referred to above. Such @ DPLL does not gen-
erate the desired steady state sequence &ad is classified as unstable.

Finally, the loop gain is again doubled by using the {ifth most signii-
icant bit for the VCO output; G = 7/5. Fig 3.2-3c shows that now there
are two occasions where the VCO output changes twice consecutively; the
third and eighth levels are inverted and the VCO cc -ccts itself on the
fourth and ninth levels.

One final point concerning the steady sta.  Crignally it was assumed
that the initial VCO phase, c?)o , was zero, which led to the steady state
error sequence. But Ebo does not necessarily have to be zero to generate
this sequence. In order that the initial VOO‘output be +1, we require
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s =
0 fPo o

TO assure that the VCO generates 2m successive +1 outputs, we examine
its argument at k = 2m; if this argument is less than T~ then all VCO out-
suts or 0 =X =2m are indeed + 1, since the VCO argument always increz-

ses. Zence we require

2mT/2m + < T

2m
Sut
. . 2m-1
~‘02m = ¢°+G ? -2cospi/2m = %o 2G
p=0
and therefore
® <
cPO 2G
Therefore, if
0 =3 =26 (3.2-4)

we are in the steady state.

3.3 Transient Response tc an Unmodulated Carrie:

An analog phase-locked locp kaving positive loop gain will drive any
injtial VCO phase to zero (modulo 27) in response to an unmodulated
carrier input. Initial VCO phases of * 7 (modulo 27) place the loop at an
unstable equilibrium point and theoretically the loop should remain there
indefinitely. However, in préctice_, it is impossible to remain preciesly a:
this point and once perturbed from it,'however slightly,‘the loop migrates o
a stable equilibrium point. Theoretically it requires infinite time for the
VCO phase to reach zero; in practice, of course, this transient time is {inite.

The VCO phase of tiie digital phase~locked lcop cdesc-ibed by Eq. (3.2~1)
( i..e.. where the error signal harmonics are suszressed) is also driven to
zero for any initial VCO phase, provided the gain resiriction 0 <4G/m<2
is met. Theoretically, infinite time is required for ths VCO phase to reach
zero, except for certain isolated initial VCO phases, for which a finite time
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is recuired. This is pussued further in App. 1.

V/aen the square wave VGO harmonics are included yielding Ec:,: .1=-T)
the DPLL reaches the steady étate output ssquence for any initial VCO
phase {ircluding 7 modulo ‘23}. Furthermore, the transient time is always
firite, depending on the loop gain and the initial VCO ohase.

We have previously seea that if 0 Sﬁ@:<:2G t.ere is no transgien -—
the staady state sequénce begins immediately. If 50 > 2G the VCO out-
put chances sign before k = 2m+ 1, which reduces the VOO paase in au

effort 0 reach the steady state. More orecisely, if
2G < ®_<2G + 2GcosT/2m + m/2m (3.3~1)
then the VCO output Wy is

r +1, 0 =X = 2m+1
Yy T -1, k=2m (3.3=2)
This result is proved in Anp. 2. The VCOQ phase at k = 2m is
2m-1

wgu} $ +G p2=0 wp-,(-zcospﬂlzm)

. 2m-1 -
=% +G Z (+1)(~2cospr/2m)
p=0

(]

That is, the VCO phase is reduced by 2CG. Therefore, if in addition to
Eq. (3.3-1) we have c‘bo <4G, then cbzm
after 2m iterations., If 4G < &30 < 6G, then 2G < $2m< 4G and

0= 64m < 2@, and sveady state is reached after 4m iterations. Continu-

< 2@, and steady state is reached

ing in this manner, the region in the Ebo - & plane szeciiied by 3.3-1)
i{s partitioned into smaller regions; each region has & iinite transient time
associated with {t, Fig. 3.3-1 illustrates thesc regions for m = 4,

If

2G+2GeosT/2m+T/2m S C?Jo < 2G+2Gcos 7/2m+2G cos 2m/2m+ 2 /2m  (3.3-4)
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<k

©
A

2m -2

X< 2m (3.3-5)

[ 2

-

{
wk=1 _

{~29. 2); _i.e.. the VOO outpit changes sign &t « = 2m -~ 1. Th2 VOO phase

2

A

[

a-1

-

2n-2
$2m =3 +G X (+1)(-2cosp7/2m) + G (1) (-2cos (2m~1) T {2m)
o L
= 60 -2G - 4Gcos™/2m (3-3-6)

Note aan Egs. (3.3-4) end {3.3-6) imply tuat

- T % S 35
2GcosTif2m + W[im Pom

and since 2G <u/2m ( the stability condition ).
0 <Q2m

SO that we must fall into a regioh 2lreacy considered. In fact. we can
partition the region of Eq. {3.3-4) by shifting the previously established
regions upward by the amount 2G + 4Gcos T/2m, and then shifiing the
newly created regions until the entire region of £g. {3.3-4) is partitionecd.

Tae transient :1me ascsociated with @ shifted region is simply 2=
greater than the transient tinie associated with the originzl region. The
original and shifted regions are iilusuated in Fig. 3.3-2.

Generalizing, if

n-1 . r
%X 2Gcospn/2m + (r-1)1/2m =§ < Z 2Gcosp~/2m +r7/2m  (3.3-7)
p=0 * #=C
then
+1, 0 <k =2m - -
3-8
Wi = -1, 2m-r <k - m (3.3-8)

where 0 =r = 2m (App. 2). The VCO phase at k-= Zm is
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R 2m-r
Son =5,*G Y (+1)(~2cos p7/2m)
=0
preLd

+G Z - (~1){-2cos pT/2m)

p=2m~-r+l
- r-1
=%,-2G-4G Z cos pr,2m (3.3-9)
p=1
Again,
0<d, <& (3.3-10)

(App. 2) and therefore the transient requires a finite rumber of iterztions.
The duration of the transient for a given 570 and G is detemined oy
building upon the regions of Fig. 3.3-2 until the entire rectangulir re-

) gian 0<G < ©wf/4m, 0 = $°$ T is partitioned. For m = 4, the result
of such a corstruction is illustrated in Tig. 3.3-3.

Xaxt, we consider -m S 50 < 0. This will complete the analysis
of the transient response since the DPLL responds identically to iq as it
"does to ﬁo + 2Wn, with o an integer. When %0 is negative, the VCO cut-
put is initially -1, which in turn produces a positive cutput which iacreeses
the initially negative VCO phase. However, unlike thg case for positive
Qo, it is possible to fall into the steady s* ate before 2m iterations. Beicre
baginaing the transient analysis, we list the VCO phase in the steady state
secuvence- This list éppears in Table 3.3-1. Recocgnizing that the steacy
slate sequence may begin at k = 0 or k = 2m, the steady state VCZ. '.-'ﬁ&ses
intervals become the union of the intervals for én and $ o Listed in
Table 3.3-2. Hence. if at any time curing the transient the VCO phase lalls
iatc the interval given in Tatle 3.3-2, then the steady state sequence is
genercied.

I

~2G - T/2m = ¢ <0 (3.3-13)

then



Fig. 3.3-3. Transient time (normalized to the sampiing pcriod) as a function
of loop gain and positive initial VCO phase for the first crder DPLL. '



-2G S @ <0

n-1 : , n-1
-2G Z cospu £,  <26-262 cospv/2m

26’ <3, £0
0 Sé - <3G
~2Gcosnf2m S @ < 2G - 2GcosT/2m

Cmel T . mel |
~2GZ cospif2m = @; - < 2G-2G T cospn/2m
B b

Table 3.3-1 The VCO phase in the steady state DFLL output sequence.
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- < <
2G &‘o 2G

-2G = o < 2G

1
T el : n~1
~2G Z cospif2m S @ <2G-2GZ cospi/im

p=0 ) p=1l

>
L]

- <
. -2G = 6251 2G

Table 3.3-2. The intervals that result from takinc zze union of the $n

interval and the & _, = interval of Tahle 3.3-:.

51



-1, k=0
w, =

+i, 1Sk S 2m (3.3-12)

(proved in App.2). That is, the first VOO output is - 1, causing the VOO
paase to increase, and the VOO to generate a +1 output at the next

sample time. Also,

2m-1
&, =%, + (-1)(-2c080 T/2m) + G L (+1)(-2cospr/2m}
i ©p=l
=8, + 26 LT (3.3-13)
‘ -2G6 < -n[zm = & < 2G

amsowehavecertamlyrewhedsteadystateaﬁerzmhemions How-
ever.wead.uanyrewhsteadystahesoonarﬁorif -2656 <0,
‘Table 3.3-2 tells us that we are in the steady state. mtthemom since

& =6 _+G ex)(-zéoéon/zm' =8+ 2G
wemachthestaadystaheaﬂeroneiteraﬁonwhen

~-4G$v <-2G
. conunumgtf-sGSQ <-4G...heaﬁer2miterations

-4G‘ =89, 42(;’,

ar.dhencethetotalttansiautrequkes 2m+1 itorations. If -8G <a <-6G,

thetransientre«nﬂms 2m+2m+ 1 =4m + 1 iterations. b:tendingthese

results, the ramon.of Eq. (3.3-11) is partitioned &s shown in Fig. 3.3-4,

where each reglon is labeled with the associatcd ransient time and m = 4.
I

-27/2m - 2G -2Goos"/2m S { < -2G-"/2m (3.3-14)
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then

IA
w

-, 0 =1

w, =
ko
L8

+1, 25k <2n ¢5.3~15)

(Aop. 2]. Eere the ;’irst two VCO outputs are -1 before the VCO out~
put changas sign. The VCO phase at x = zm is

1 2m-1
Bn = 8ot GZ (-1)(-2cospT/2m) +G L (+1j{-2cosp%/2m)
p=0 =2
= 60 + 2C + 4GcosT/2m (3.3-16)

and combining this result with-Eq. (3.3-14) we obtain
< < -
N | ] éo .ém 2G (3.3-17)
s0 that steady state is indeed reached. Eere it is possible to fai! into
the steady state sequence at k = Z: irom Table 3.3-2, this happeaswhen
~2G - 2GcosTf2m S 62 < 2G -2GcosT/2m (3.3-18)
Since 62‘ = Go + 23 + 2GcosT/2m, Eg (3.3-18) becomes
-4G - 4GcosTf2m = 60 < -4GcosT/2m (3.3-19)
_The intersection of the regions of Eqs. (3.3-14) and (3.3-19) ylelds a
region which requireé two iterations to reach steady state. The remaining

portion of the region of Eq. (3.3-14) is partitioned by shifting the regions
of Fig. 3.3-4 down by 2G + 4G cos 7/2m, as specified by Eq. (3.3-16); tha

result is illustrated in Fig. 3.3-5, again for the case m = 4. - =
The géneralizaﬁ.on of the above is that for

. r r-1
of(ﬁl)ﬂ'/zm-i- Z 2GcospT [2m }560 <-£r17/2m + L 2Gcos p'rr/2m_]
p=0 =0 =

(3.3-20)

znd @, 2 -7, the VCO output is
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-1, 0=k =r
Wk=

+1, r+1 Sk <2m (3.3-21)

where 0 S r S 2m -1 (App. 2). The VCO phase at k = 2m is

r
$2m =9 +G 23 (-1)(-2 cos p7/2m)

p=0
2m -1
+G L (+1)(-2cosp7/2m)
p=r+l
r
=% +2G+4GXZ cospn/2m (3.3-22)
) p=1
and
B < -
L G»Zm 2G (3.3-23)

(App. 2) so that the sieady state is approached without an overshoot into
the ®> 2G region. Steady state is reached at k = r+ 1 if, by Table 3.3-2,

T | o
-2G Z cospr/2m < § +1 <2G-2G Z cospn/2m (3:3-24)
p=0 r p=1
Since
r
&5”1 = 60 + G Zo(-l)(—zcospn/zm) (3.3-25)
p= .

~-

Eq. (3.3-24) can be expressed in terms of & :

r r
-4G T cospm/2m <@ <4G-4G Z cospT/2m (3.3-26)
p=0 ° p=0

Note that it is impossible to fall into the steady state at k =r+1 if
r > m, since the regions of Eqs. (3.3-26) and (3.3-2G) do not overlap:
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T r-1 -
r ~ .
-4G ZcospT/2m > - ' ri/2a+ 5 2GceospT/2m ! iccr®m
~ : [V -
p=0 p=0

Vo maay now procecad to construc: regions in the éo - G plane ang
label the reguired transien: time. We siart by confining attention to a
ragion speciiied by Za. (3.3-20) for & particular veive of r; let us call
this region R. The first stes Is to sae if it is possible to fall into the
st2aCy state sequence affer r iterctions; i.e., we iind the intersectioc.
of the regions of Eq. (3.3-20) and R. {As noted previously, this iatersec-

-

tion is awll if r ® m.) This region recuires r transient itereations. Tor
any ouher point in R, the VCO phase satisfies Eq. (3.3-22); i.e., after 2m
samp.as, it increases by the amoun:

A= 2G + 4G = cos pT/2m.
=1

Hence, we translate the previcusly construcied ragions upwaré dy this
amount, consider ornly their iniersection with R, and ohsarve theat the
trans:ieiit time for the translated region is 2m greater than that for the
original region. After this construction, there will stiil be a pcrtion of
R whicn is not partitioned. To partition this remaining region, we irans-~
late the newly constructed regions downard by the amount 8, and continue
this crocess until R is completely partiticned. The result of this process
is illustrated in Fig. 3.3-6 where the entire region -w= 550 <0,
0 < G < w/am is partitioned, for m = 4, Coupling this figure with
Fig. 3. 3-3 yields the complete transient behavior of the first order DPLL,
since the loop responds identically to &o-.k- 2T as it does to 60.

One interesting feature of the digital phase-lccked loop is that it
does not possess an unstable equilibrium point (or, more precisely, se-
quence), as do both the analog loop and digital iocs without VCO harmonics.
For assume that the VCO is 180° out of phase wi.a the input carrier.

Then the VCO phase, Whi;:h is initially mradians, becomes at k = 8:
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F.g. 3.3-6. Transient time (normalized to the scmpiling period) as &

function of 100p gain and regative initial VCO pr.asc for the first order

DPLL.
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-
8, =8 +& X (-1)(-2cospr/8)
p:

nd the VCO cutput is

[{}

W, = S.c_’S:T/S+$e) =3

£
~~
(M
9]
~

1
l.
[

8

L)

Hence the arror signel et k=81is
Yg = {-2cos §T/8){+1) = +2
as ogrposed to the -2 originally assumed, and

Q)g = -+ 2G+2G = -1+ 4G.

We 322 that it is impossible to keed the VCO phase at -~ after eignt
iterations, but instead this phase increases and the DPLL approaches
the stehle equilibrium sequence «. Fig. 3.2-_.

2 second feature of the DPLL is the variation of the transient time
as a function of the loop cain, G, for some fixed initial VCO phase. O:I
¢ urse, we expect the transient time to decrease as the loop gain increea-
ses, as larger loop gains correspond to “faster” ioops. This indeed is
the situation for an analog loop but it is not precisely correct for the cigi-
tal icop, with or without harmonics.

For the analog loop (where .2 sum terms are neglected) describac by

%9- = -Gsind (3.2-29)
we have 0 T
1 dd _
TG\ sin® S aT
P 0

o]

£

Since the left side diverges, we coasider the time 7T for the initial VCO

phase to reach 0.01 radian (an arbitrary figure). Then



EAY
.-.=i\ ax _ &
t G| sax G
0.3

and the traasient time is inversely p.oportional to tiae Joop geain.

T2 digital loop with the VCO harmonics suppressed it describ

oy £g. (3.2-1), repeated here for coavaenizace:
el = O ~ (E/FGsie (3 3-30;

Here, 0 < (4/7)G <2 for stadiiity ({Sec. 5.s). The number of itergticas
required Ior lﬁk = (.0! is chteinad as a func:ion of loop gain, G, using
a simp.e computer program, and the results are diszizyed in Fig. 5.5-7“cr
\".50 = W/2 and &_ = -27/8, The irensient mis are computed at discrete
values <f looy gain &nc so the graph is @ set of discoet: Doints. Notice that
the inver:e relationship between gain ard ‘ransient time holds only Zor
G < 0.8, but not for larger 1oop ga.1s. Zrom Apr. 2, we knew iaat for
0 <{4&/m)YG <1 the VCO prase gces to zero .onctonicelly but thet lor
1 <(&/7) G <2 it oscillates abou: zero, its magnitude approechi- - zero.
Notice that althcugh the diiference equation Eg. (3.3-2} is & ciscrete version
oi the differential equetion, Eq. (3.3-29), the former exhibits two distine:
transient behaviors, while the latter exhibits only one. Wren G is small,
the diiference equation is u good apgroximation to thg difierential equation,
and incesed both ecuations exhibit similar monotonic transient responses.
However, if G becomes lar, 3 ( (4 /TT)G > 1, to be exact), the approximation
gets poorer. The diiference equation is still stable but now exaisits an osc-
illatory transient, and the computed results show that the transient incrcases
as the .00p gain increases. This is expected as larger loop gairn causes a
greater overshoot of ihe origin by %k and hence more iterations are requirecd
to achisve {55 | < 0.01.

Fort digital loop, with VCO harmonics inc.cczq, the transient times
are optained from Pigs. 3.3-3 and 3.3-€ by simp.y Zoilowing & horizontal
line at »‘30 through the various regions. The .esulis ai. displayed in Fig. 3.0-8

for »‘30 = 7/2 and 390 = -37/8, and we see that the curve is roughly an
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invarse reiationshis except for centaia inwrrals O gain where oc lous

- g -
s inio asier™ regioa.

3.4 2Jcsnonsc to a Freguencev Gifsat

I ac inoat carlar frequeasy is deviated by L7 Kz, a prase anor
cavelops petween the Inpit axd YOO, genercling & shase e;mr which Las
& nonzerc average valule. SuSh & passe ertor seJuence is fiiustrated iz
Fig. 3.4-1. The averzge value is just the comect amoun: G deviaia the
VCO raquancy by A Iz so that the loop is i equilibsiux, fracking the
devizilon witt a phase lag error. ‘

" “his thesis deals with the FM Gemodulation cepabliities of & digital
Bhasa~locked lous 25 opposed 10 te irecking capebilitiss. Therefote, we

' mmemaaystatebe.armofthenm act the transient r2SDOA53. . - -

Inceed, aeomp!ete solution of £q. & .z-.)isexba(s;}' coiiicait, even for
:t..e csseofnomiseand aun iyt Secuency ofises.

H..hthe DPLL in the steady sizte we caa caicuizte the shese erer
deve.opedasamofmmfmqﬁencydewGuon.andLse:;e'esﬂt
‘toobtainthemaxinumtackahleoffs. as a muaction cf the 150p gaiz.

"heinmmtheD?I.I.is

= X =--zeos(k1![2m xZﬂAflfs) (5.4-1)
where &f=&equencvoﬁsetin5;z. The VOO is running at the seme o~
_ quency but with a phase eror and the VCC output can be writtea s

Cw, = Sg{ (k- E)NT/2m + ZEALE ) 1 13.2-5;

Let .l:e devlated ﬁ'equancy corzespond to 2N samzies:
N = [n/(v/2m + 2116*/‘ o (3.4-3

a% :‘-

where the square brackets denote “integer par. - '*. Thie equation that
detemines E as a fuaction of Af states th- (. oo v samples the VOO
pnasec shall increase by the amount szﬁf/fs :
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E+N-1 -
I (s —:.cosp{"'?.:n-l- raw )| = N278Iff (3.4-9)

Pario-ming the sumimation and using the approximation

N(T[2a+ 2bi[i ) = @

we o=-tsin
( Nzl 1z, 2z f*-‘;
1 i ~1} 2l2m -
B ytE T mE R | — s
(Zm" i ’ L 2G J

s
The maximum offset trackable occur's when the &gument of the inverse
sine is unity:
2G = (N2uw Af/fs) sin(7/2a + 2ﬂAf/fs)/2 (3.4-8)

Note :hat if (W/2m + ZWAS/E_)[2 < T [2, then 3. {3.4-6) becozes
IwaE = (4/M G E (3.4-7)

which s the ooneepondi_ngitesult for a first orde: analeg loop where,
as observed in Sec 3.1,

G = (¢/mGf_. (3.4-8)

analog

In Fig. 3.4-2, the maximum trac e cffset, 3f, is plotted against the
" loop gain, G, for both the digital and analog phase-locked loops, for the
case m = 4, and as anticipatsd by Eq. {3.4-7), the two curves agree closely.

3.5 Design Values for the First Order DPLL
The first order DPLL utilizes a 10-bit A/D c5.voer, and therefore

the error signal is a 10-bit word. From Table z.5-1, the restriction on
:nephaseerrorsignal.ek.is

loy o S 035 (3 5-1;
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Thae resoriction that the f{irst VOO harmceaic fzii outsica the DPLL banc-

wicik, 3,, is givaa Sy Eq. {2.8-4), =ad repeatec here:
&
£ [2a - 24f 2 5. (3.5-2)

where

fs = sampling frequency

Af maximusn: srequency devistion

Al of ihe digital phase-locked 1oo3s were constructed using TTL and DTL
logic, having speecs of 1 MHz axd 10 Mz respectively ancd to sllow a
sufficient computation interwal for thizd order 1oop calculations, the sam=-
pling frequency is chosen to ze 50 X==.

Tae digital filter in the first oxder DPLL is simply 2 proportional nath
of gaia 9, producing the linearized model of Fig. 3.5~1. If the input
carrier is deviated in frequency by Af He, the iaput phase is

9, = 2nbfkrs (3.5-3)

k

. &nd the error signal, e, , appearing in the linearized modal of Fig 2.7-1is

_ 4 s _
%7 W (4/M9,6 Gf_

(3.5-4}

where G = loop gain = ngVOO' Imposing the restrictioa of Eqg. (3.5-i)
wields
2T Af

Gfs

= 0.35 (3.5-5)
The input phase-output voitage transfer function of the lirearizec
model is

@/7)g (1-2" .

1-0- (4/m)e, G

= (3.5-8)

vco %

and taking the difference (1-:‘1) ¢(z) as the input “.eque:.cy yields the
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inpul requency-ouizul vol:a:;e transfer fuaction:

;e (</7 g
Xz = — (3.5-7)
{1~z )&z 1-01-(¢/m3G3

If (4/7) << 1, the bandwidth, 3., of this transfer characteristic is given

ay {39p- 3)
B = 2/=2) G Hz (3.5-8)

Using Eqs. (3.5-8} and (3.5-3) in 23. {3.5-2}, we ob‘.a:... he design
eq:“:an

m S i [i1.28 8f (3.5-5)

The sampling frequency is chosen to be 30 X&z which allows a
sufficient computation interval {20 i sec ) for the STL and TTL logic
empioyed. Txexz, for 4f= 600 =z, Eg. {2.5-9) vields

m S 7 .; ‘v .3- 0)

-

mevwalgonthmxssmpn.uedwaanm‘sapowe‘oz‘wor ace we
choose m = 4. Egs. (3.5-5) and (3.5-8) yield

B, 5 2.16 Kiz t3.5-11)

a0

The realizable loop gains are of the form
. _
G =1uf5. 21\. N = integer {3.5-22}

_ and using N = 1yields G = 0.314, satisfying Eq. {3.5-11). However,
" the maximum allowable loop gair from stability considerations is
n/2m = T8 = (,384, and this proves to be too close to 0.314, so we
shall use
G = mn/5-22 = 0a5° (3.5-13)

As the condition (4/) G <<1 is not satisfied, thc bandwidth approxima-
tion of Eq. (3.5-8) is conservative; the actual bandwiath is
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B. = 1800 £z,

wiich s:il satisfies Eg. {3.5-2;.
Tne foot that our maxicum ifeguency daeviation is rether small
{ 22 = 300 Hz) stems directiy fron tze limitions ci the logic speed.
Fad {aster logic =2en available, then A1 ccild have been increased
oy e same factor as the logic spead increases. IOr examrie, using
ECL, the sampling frequency could e increased by a factor of 10 and
hence Af could be tea times la-ger without changing thr lue of m.
Summariziag, the cesign values {or the first order DPLL are:

G = 0.57 = w/5-2°2

Af = 600 Ez
f = 50 KEz
m = 4
Tor an additiona! illustration of tae design procedure, coasicer &

voice channel requiring

= 3500 Hz

=3

Af = 105 KHz

if the A/D converter employs ten bits, we require

£
m
8

mS f/11.288f = 845- W £ (3.5-14)

Using fs = 500 KHz allows us to choose m = 4; the required arithmetic
compiiations can be performed in one sampling period if ECL logic is
utilized. The bandwidth restriction {s

B, < f /2m - 24f = 3% KHz

and loop gain restriction is G =2 0.3. The chcice Zcr the loop gain is
G=75-2 = 0.314 resulting in B, = 36 X=z.



3.7 = ardware Implementaticn

~he hiock diagram oi the first orcder DPLL is showa in Tig. 3.u-1.
Toliowing the sample-and-h0id and anclog-to-digital conversion, we
..3Ve & fen-bit binary worg, x.‘. Tha bank of exclusive-or gates performs
the muttiplication of x, and the VCO owiput, w. = Sq(k7/2m + $k )s
and t:e result s stored in the output regisier, whose contents are conver-
ted back to analog form and filtered. The outpui is also scealed and inte-
grated to generate the VCO argument, (k+ 1)7/2m + $k+ |» Weich is stored
in the VOO regisier and used to muitisly the next input, X .

T2 obtatn the gain G = 753+ 2°, a factor of 1/15 = 1/2% is used for
the explicit VCO gaia, leaving T/(5 /22) as the implicit VCO gain. Tais
implicit is realized by using the third most significant bit of the VCC
regisier to feec the exclusive-~cr galtes (multiplier}, as this zit corresponds
to 5/22 volts. Notice that the Zoward I1con contaiss unity gain; this is
because the D/A converter uses only tea kits and ssciing in the foward
loop would mean a loss ¢ bits in the output. Alsc, the unity gain insures
that a maximum number of the DfA's zen bits are used, so that the signai-
to-guantization noise ratio is 2 maximum. »

iz order to avoid introducing truacaticn error, the VOO register axd
adder use 14 bits. In this way, ali Lits are retained aiter the scaliag by
1/16. The coastant (%/8)/(+~/1.25) = 1.25/8 has the 14-3it binary
represeatation given by

1.25/8 = 1000010000.00023

This follows from the fact that the sign bit represents 5 volts.

To understand the sequence of evenis in the first order Z2LL, coasicer
the timing diagram illustrated in Fig. 3.6-2. The ccomputation interval
(itentical to the sampling pericd) of 20 kisec is d.oli:c inic five addition
intervals as shown. The last two are for the Vo sompulation; the rexain~
ing three, labelled ATI1, AT2, AT3 ace st used .= the Iiost oxier D3Ll--
they are reserved for the second and third ordsr DZLL computations. Al-
though Fig. 3.6-1 explicitly shows a three-input adcer, ocaly a two-input
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acdor is amployed and we use this two-innput adder twice, recuiring tha
two VCO addition intervalis shown in the timing disgran.

We start at £ = 0 with the iuput binery word X {the A/D converrer
cequires 10 dsec for conversion; heace x(i} was sampled at t = 10 Msec
o< the previous cemputation interva:). As scon as x, is ¢generctec, it is

passad througa the exclusive-or getes; that is, x, is multiplied by
2

w, =35 ku/2m + $,_j.. At t = 10 isec, & command is given to store this
(.S
product, v, X’ in the output register. if ¢ = 13 Usec, Yy is taken from the

output regi_s..er and sent to twe channsis: the output and the feesdback
paths. In the feedback path, (1/16) ' is added to the VCO register con-
tents,denoted by VOOk,
register. During the next VCO con.putation interval, the conients of the
VCO rzgister are addea to the ccastant (7/8)/(7/1.25) and the result
storec again in the VCO register. The VCO register now contains the new
value of the VCO argument, VCO

end this temporary resul: is stored in the VCO

k+,,where
&

vookv'1 = (7/8)/(1[1.25) + v, [16 + VOO,

This value is used to generate the VCO output by having the third most
significant bit of the VCO register feed the exclusive-or gotes. At

t = 20 U sec, the new input, xk +1° is available and the computation cycle
begins again.

3.7 Output Noise
In this section we compute the output thermal, quantization, and

harmonic noise of the digital phase-locked loop. At large input signal-
to-noise ratios, the DPLL is able to follow the input modulation w..a a
small phase error; hencea the linearized mocel of $:c. 2.8 is used in the
calculation. This first order linearized model iz zZov.a in Fig. 3.7-1. The
quantization noise which arises from tae fini:z siiiber of voltage leva.s
availadle is present regardless cf cay thermal ncicse, and is responsisie
for the maximum attainable output signal-to-noise ratio. As .he quanti-

5
H
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"3 .1 Om:'out Thermal Noxse

zation noise is present when the phes. error is smeall, the output

guaniizatioua noise is calculated using tne linearized model.

Az low input signai-to-noise ratics, the izput noise spikes begin

tO appear and the phase ervor no ionger remains small, invalicating

use of the linearizec medal. To ga’n some insight into the DPLIL per-

is introduced, the DPLL noniinear differer~a ecuation is solved via

| formance witf: input noise spike., 2 deterministic model of a noise spike"

computer, and the resuit {(VCO phase so‘ution) is examined 10 see whether’

- Of n01; the DPLJ £~'lows the input sotke: -

_ I.e?. .he mput PM sxgnal be -corn .ed by aathive white, Gaussian
noise having a two-sideﬂpower spectral density T / 2. Thea thie band~

pcss filtered signal plus nmse 1s exoressed 3s -

x(t) = 1c:)c:os ot t —nz(t)sm zrrf tx sAcos [z.‘rf tw(t)

where nl {t) and ngm are white, Ga.zssxan noises, bandlimted to
‘the IF bandwidth. c..nd ..avmg two_sided power spectral denszty T. Axso, -
f is the carrier frequency When the irput signa.—-to-moise ratlo _ ]
' S /N = nan.le )is large. Eq. (3.7-1) is oppmximately given by

x(t) » 2A<=0s Ezrrf t+ cpct) + nz(t)/zAJ

_ That is, the therma‘ ncise introduces a pnase contnbution

aft) = nz(t) /2A, hav.ng twe—s‘ced power s'\ectral density :
‘ G, o n [ 4a®
The liiiearized first order DPLL haansfer function is

- B Y‘Z! - __E_:-l
H(z) = $(z) z+G-1

and tha output noise power is

fm ¢
N, = SGn(f) | 1?28y |2 4s
“fm
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cut-oif frequency ¢l the cutdut 1ow pass filter. Now

sad
f << andsolor .fl= f wehave
o s foo!
AT it
i 5¢{¢’ D B 2.'-':’fo$ 13.1-6)
yielding
N, ™ {27/ y2 3 2 {3.7-7}
2 STIGE v i 5 NEY
° { s! @ / 4 J
a2 . .
The input signal poweris S, = 2A47; the output signal-to-ncise ratio
is )
h~
So i So
- = = = {3.7-8)
N tom o E 2 9 ! 2
o (2w [GE )" nmf " /sA
. - s feg?
If tne moeul ng signzal is & constant, producing a fixed frequency
dev‘atian af Hz from the cam 1er, the ingut phase is
@ = 2Tk E '3.7-8) .

The linearized mcdel tracks this frecuency deviation with a phase eoc:

&, =9 - 2mbi/(¢/mE G
and the éutput 1s a constants -
| Y = 27:Ai/f3(‘ (3.7-11)
Hence the output signal power is S (2mbf /i, G )2
2 > (3 7-12)

SO
N T %8 %
[o] hoe

as epected.
If the modulation is sinusoida: .ae i=~put Sizgc Is
3.7~

= Bsinzni .
CPk Bsinzm i
with 8 = medulai.... index, fm = . >dulating {revucacty, -n<, of course,
T4



thy

=I=_2i . Taea the linearizaeg ioop outpt is iso siausoidal wita

Sl gven oy

Voo = SiE(eT B8 » B JGi E.1-4)
Ths ouipt siczal powesis S = ({y__} lz.a:xl as expecied,
S S,
—0 - .3. 2 i
y N = 38 YN 12.7-15)
.

"..e'esnl.sai“" (“’l- \am:{‘;. -13) are of ~oomse icentica: to
‘fesnitsfarana\;inazyd:smm as the DPIL transfer functca is

idemi..at:oamﬁe:enﬁm&ansfarm tbatis.a!:ovet:n SHoas,
thnag.mlmse%cawlwpmweismmtoadiscﬁmbm

. .z Oueniizatics Noise

i&wehﬁveaﬁai:emmhe‘:cfbi:s availzble, we have a f=ite cumser
cf vcizage levels representzble be these bits. Hence, the sa=zlied inpux
signal is quantized to these levels and as ewor is cozmiited, Frodusizg
a nois: componeat at the owtput. ‘This quantization  -e cCmpocess is
nsmmmmmmmm.mum@emm
atls oumput sigzal-to-nolse retio.

A e2ck sampling instaal, whex the A/D coaverter acts oa a3 irput
voltage level, the hinary werd clzzained represents the voltage level
soundad off to the searest avziiable level. Thus the emor committed lies
between -S/2 and +5/2, wheiz S is the quantization step size. Assuzing
22t tne true level i1c uniformly distributed over iis rexge, the error is ini-
nrly cistributed cver the range ‘-5/2, $/2), anc kes a variance

o? = s?/12 {3.7-16)

~nw, the guartization errcrs from sempl! (o s.=pee a2 indepeacent.
Tris ‘cilows froo the I.ct that between sampies oo I-zut signal veasics
cver many cuantization levels. Ia fact, ‘the samuiing lequency is tawow
the ca.riar frequency and so, between samplss, the inp ol varies ovar at
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iea&st one cvcle, wiich means & veriathon cver all the guantization
lovels. Since the errors are izdzpendent, the powar speciral dernsity
of o guantization nofse is white T17:

o~ ]

G, = s*/ug (2.7-17)

whore :‘s is the saniisg aguency. The oi.-r::; cuamization noise, k‘q.
is thecesore T

f ) -

&= 255, 2 2 3 -
N_ =\ G !5(3 Byfse = @rfG)(f_fE Y s (3.7-18)
S g A =m''s
-f
- .

3.7.3 Soike Resposse

- - T3 therieel OUIPLT nOise results Satained &nove ere vaill oy 2t
large iaput signal-to-noise ratios, for waich the oz noise approaina-
o2 of EQ. (3.7-2) and the lineerization of the DFLY are velid. Wken the
input signal-tc-noise i'a:*’.o deteniorates, both of these assumptions &re
:m;alidan-theinms'ignal-isenmmdbyndsespibs. A noise spike
appeerswhen&esignalplnsnndsepbasormtatescomphte.yamum:he
orlgincausingthe,input_phasemmqreaseby 2r radizrs. The input Je-
Guency coasequentiy contains a sharp pulse, having tha area 27W. Figure
3.7-2 dlustrates the input phase and instantanecus frequency whea 2 spike
appears. -

The spike duration, Ism,depends upon the IF bandwidith, B’E" To
obtaix this relationship, cons ider the modulatics deviating the carrier to
the high end of tre IF bandwidth, Than z.: th: noise components are a:t 2
lower Tequency than the camier and tae tencency !~ for the sigmal pius
noise phase angle to rotate clockwise. If at so=e iastant of time 2ll the
zolse powasr is concentrated at ke lowest IF Z-scuency, then the ncise
phasor is mwsiq at -B Hz with respect c = signal phasor, and the
time raquired for one complete 1evoitiiox is

Tepike = /B (3.7-19)

-
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Tiis, 5Zcourse, represents the fastest possible spike.

2 diferertiating dscriminator Gemodulates the input phase change
producizg a spike, or, as it is sometimes referred to, a "click ®, iz the
outgut. I i tne appsatence of Slicks that degrdes the output signal:
aﬁ&&es&mmmmm&noﬁm Aphase-
. m‘mmmmmmmmmmsmmamet.
:mdawmﬁasm)hyfmn&mmmsem&m@
teristic. themspectraldmsﬁyofthedcnﬂe:istz tinesﬂ:em :
spectral densky of the spike &id hence the doublet comiribuies Signisi- -
T cantly lesspowertothebasenandsigna!“‘“coesthesﬂe
mseehwapmu-b&edmmaspﬁkeimadmh.a.let
'Lsmmimthaphasedm&mmm mma:actansttcaﬂses
from te. ,:oduc:cfmﬁgn“ f-2cos(u ts-a;, 2nc VOO square
_vave‘\mdanental (Qfﬂ)sin(ut-l-é)] and is given By

:; - (ﬂ")sm(!k ék.' ) BI1-2)

r.q.@?-ic)npkttedin“ﬂss.'l-& Mwnthephase-lockedloopis
mmmm@sm-emmnmmof e =0
~(<)azdesigne¢,wnbasedeachuﬂ.aﬁonmiseandhamomcdm
tmurequ!res ieklio.zs?ﬁra ..m-bitA[Deonve:ter.) When a noise
spike eppears, mmm e, reml.‘y inaeasesby 2%, producing a
largephasam Depend!ncontbe!aopgm thex:atmeofthesp.ke
‘ voo;masea maydthnraac'asqbv zﬂortemmmtheneighhorhood
“of zero. Inthefomarcase.thab?‘.&.dlovstbespikamthem.
M&mﬁmﬂmtﬁm&ﬁevmphme will coatain &
spika. Inmelmase,thevabmmm&ymc'ease (ia an )
mempttofol.wthes;!ke)hnratnmsto{ts fnitizl valv.:; a typicsl plot
of é'k might appear as in Pig. 3.7-4 . Notice th:: 6;: contaias a spike.
The output, being proporticnal to the derivativ: .. -_.e VCO phase, contzias.
a doublet, as shown in Fig. 3.7-4. Noti~z, that in oCer to convert a

spike into a doublet, the DPLL mus: “slip a cycle®, which is to say that
the input phase and VOO phasc differ by 2w. This, of course, has uc

18
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effect upon the loop operation as the phase detector characteristic
is periodic, with period 2w

’a tharefore would like to deteznine how the first order DPLL re-
sponds‘.:oinsﬂtnoisespﬁkes. To this end we intrcduce a deterministic
model for the input phase during « spike: ®, shall increase from 0 to

znmrs i) seconds in a sinusoidal manner:

‘i’sp&em"n“‘“‘",r i )» o0st=sT ) (3.7-21)

Aﬂms‘—“edmﬂg.s.'l-sa. mmummmmamm
deaecse.alsomaslmsoﬂalmm

At = 0

(At€) [2 + A - e)[_a Jcos WL/T, pike (3.7-22)
‘% for o St S‘r

o memmmmm This smplitude
vmmmxsmnswmm.sa-sxa. Hanee when a spike ocours, the
) emsstonﬁxtheim:tis 2

| r_t,g =-A (u )coe&vlh+vk*vsm(u )1 (3-7-23)

Amwmwmwmmmmmm
mmmmwmumummmmm
: hwealﬂw(ﬂam)wmanmdmm We shall

mmm ’ -

e =Bsinznkf 15, (3.7-23)

where =~ - f = n‘odn:aungm

' mmmuamwf = 4f) at k = 0; therefore

wemmanmmsﬂke&k-r hm.ceviththeﬁrstmder

design values, we choose Af = 600 Hz and esasicy fmnzooxz.sss.
n!'!, = 2(3+1)200 = 1600 Hz (3.7-24)
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Peoine(t) = (1= cosmtfTypixe)

2w

4

T opike
(a)

INPUT AMPLITUDE, Agpio(t) = 255 + 3% cos 2wt/ T

A ) .

" Tepike
(b)

Fig. 3.7-5. The deterministic spike model: (a) phase vanatiou;
(b} amplitude varlnttou._
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Toke ~ 1/1600 = 0.623 us . (2.7-25}
iz terms of the sampling pertod (T, = 20 usec) lais is

T ® 525 ms f20 usec = 31 samples (3.7-26)

spike
The input phase pius the negative spike is illusiratad in Fig 3.7-6 for -
the above ‘parameters.

Beﬁotevaaamnetaénmresponsetotnespxke.weﬁrstexamm
theDPI.I.responsemthesmusoidalmod\ﬁeﬁanalmsothatwehave
. a basis for comparison.” Fig. 3.7-7 is the VCO pha’e, §,, obtained by
acommsolwoncfthemdiﬁerenceequwm

- %‘ 36 .-(n/m)cos(xn[h-vk)s«;(kn/a-n-@ (3.7-27)

V= 3 sin 27 200 k / 50,000

‘Ihesoluﬂonisgeneratedbystarungatk=-250wtth$ 2‘_’&:0 and
isptiutedmnbeginnmgatt=0 so that the traansient time is one com-
;Plete cwcle Qfliw Mglatim. ‘rae distortion present is attributah.em

——

“two facts: first, theteleprlnter can space only an inte;-al numbet of
spaces; secénd we arelooking at the unfiitered somtionto Eq. (3.7-27)
~ which contains the harinonics qenerated Ly the square wave VCO. De~ -
spxte this <igtortion, it is clear that the DPLL is following the sinusaidal
The sinusoidal modulation plus noise spike is now introduced to the
DPLL, and the solutica'for &, is found and plotted using the program of
Sig. 8.7-8. The programming language iz FOCAL .:8] and the program was
nn on a 2D?-8 minicomputer. Computer variaS.es correspond to equetion
variables according to Table 3.7-1. The progrex is rather straightfoward:
lines 2.05 to 2.15 compute the enor signal with or without the spike (the
proper case being determinad by line 2.05), line 2.20 updates the VCO
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rig. 3.7-6. The input sinuscidal phase plus 2 32-gample spike.
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Fig. 3.7-7. PFirst order DPLL respor . to sinusoidal modulation.
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C-FNCAL, 1969

01.65 & T>F

@le10 S W=3.1215933 G=u/5%2125S PX=0
Gle15 F Wu=258,1,2/R:D0 2

Al.22 QUILT

02.05 8§ H=3#FSIN(2%y«288%i/50850)51 (Ax<T-X>)2.15
B2.1@ S EX=<2+F>/2+<2=E>*FLOS(2*¥*xK/T) /2
02.11 8§ FHU==EX*FCOS(X«R/B+H=w* () =FCOS<u#K/1>))
€2 .12 S EX=EL%FSEN(FSIN<K*P/B+FA>)I53G07J 2.2
P2.195 S FA=~2%FCOSCK*W/8+HIkFSGNL FSIN<H* s /78+F4>]
Az« 20 § PH=PL+GXEK
D225 1T €K 2.9:24352.35
- PP38 F X=0.1560;T *."
¢2.31 T ¢
A2.35 [ C(K/Z1C8=FITR(X/10322:9:24, %9
22.88 F X=8,1,FITHCAO+<18/3>%PKI;T *
02485 T "%, #3F X=0,1,405" " *
0250 T "a">!¢
32.96 C
*

Fig. 3.7-8. TOCAL program for solving the iirst order DPLL equation
with csinusoidal modulation plug an input noise spike.
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2rogram Variable Equation Vaciable
T Spike duration, Tspike
E Minimum e~:rier amplitude, €
w n
G Loop gain, G !
H Input phase, cak
EX Error signal, e :
P. VCO phase, c‘bk

Table 3.7-1. Correspondence between the variables appearing
in the computer program of Fig. 3.7-8 and the DPLL eq.'ation variables.
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1

peaiag evg;y,tenih computad value.

Tir_s';: ‘ajspike having no amplitude variation (€= A = 2) is intro-
c‘u(ced,.' oné result, shown :n Fig. 3.7-~9 clearly shows that the DPLL
ioilows the in:qut spike, and therefore *»~ DPLL output contiir.s a spike.
If the iz it amplituce is allowad to drop, the DPLL stil! follows the spike,
es iiiustrat_ed‘ in Pig. 3.7~10 waere €= 0.5. .Decreasing € further, the
DPLL suppresses the spike, as-evidenced by Fig. 5.7-10 where €= 0.2,
InAgen'eraI. wé eipect that as € de..~3ses, it becomes easier for the
DPIL to suppre'ss the input spi~., D2cause the gain of the DPLL desends
on the carrier exjnplitﬁde. Furthaimoce, @ .o0p with 3 small gain cennot re-
sponc qu‘icklfto the rapidly ¢! i~cing input phase <vhen a spike is present
Notice also that when the spiks appears, the input amplitud ‘¢ and there-
fore the loop ‘ée.in) drogsprei:i sely when the phase is changing most rapid-
ly. Henge, in de¢ Jeasmg €, we reach a point wh.ce the loop becoxes
sluggish enough an.d cannot follow the spike.

‘Ia widgi spike (laréer ?spike) ic tntroduced we expect the DPLL
to foliow it, as-this slawver spike wiil be wii_in the dyaamic capabilit
of tha loop. For example, let us introduce a £0-sampie spike heving
e=0.2. ‘Ithough the DPLL di. not follow the carresponding 22-sampie
spike, Fig. 3.7-12 shows tha:i widening the spike aliows the TPLL to
followit: in a sense, the DPLI. has more time t~ follow the phase char "=,
even though its gain may drop.

- In conclusion, tr en.hthe analysis usi..g the akove noise spikc model
sl.ows that we should Tt e.'pec't ary thrashold .mprovement by the first
order DPLL . er tne com}entlonal discriminator. 1+ is for the second and
th'd order DPLL's whera we have more degrees of tre um availaine
(i.e., additic...“ loop gains to ndju st) that we aexpoct to ~htain *hresheld

improvement.
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Fig. 3.7-9. Pirst order DPLL response to sinusoical modulation plus.

a 32-sample, constant amplitude spike.
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Fig. 3 .- i0. First order DPLL recponse to sinusoidsl moaulation plus

a 32-samp'c, 0.5 minimum amplitude spike.
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Fig. 3.7-12. First order DPLL response to sinusoidal modulation plus
a 40-sample, 0.2 minimum amplitude spike.
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..~ =armonic Noisa

~
-
-~

Sesides the thermal and-quantization noise, another rnolse contrisi-
tion, geaerated by the VOO square wave aarmonics, appears at the output
o the D2LL. Recali that the sampling frequency is rel-ated to the carrier

via
4 : P2 = £
wkere fs = sanpling frecueacy
:‘o = carrier frequency

n, m = integers
“here ore, the carrier frequency is shifted to the frequency fs Jém. The
VOO s3uare wave contains odd narzonics, which are shifie: :o the fre-

guancies

z’s/4m. 3fs/4m. 5fs/4m, s e (gp+ i)fs /4:_!1, ..

with p an integer. The phase error signal which is the product ¢f input
and VCO signals contains the sum and difference frequencies, located a:

o, :slzm, 2fs/2m, 3fs/2m,. « e .qfslzm, « .

with ¢ an initeger. Only the termr at 0 Fz contains any useful informatiorn,
namely a quantily proportional to the phase difference between input &nd
VCO. The design equation developed in Sec. 2.6 guaranteed that the aa=xt
‘term, at fs [2m Hz, falls outside the DPLL bandwidth. However, since the
sampling frequency is equivalent to zerv frequency, the term with ¢ = 2m
‘is the first to fall into the DPLL bandwidth, and contributes to the output
noise. This term does not affect the VCO operation (as argued when deval-
oping the linearized model in Sec. 2.7) but does conatributc output noise
which we labei harmonic distortion.

To calculate the harmonic distortion, we =us: go hack to the VCO and

find the harmonic terms which gencrate the distortion. There are two such
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. .82 st st .
asmonics, the (4m -1} and the (4m+1) ; the sum of the (4m - i) ' rar-

aonic and the cammier requency is a distortion term, while the difference of
he (da + l)s harmoaic and carrier is also a distortion term. Thess harwornics
appear expli\.itly in the squars wave Fourier series as

T .«.. i
- siax+ +4m sia=m-1)x+

-

s‘:s";l m 1 Sm(4m‘r ‘)X'l' RN

and e have
2cos (k7/2m + Q. ISgkw/2a + q:k)

£ . & L
= ;sm(@k.-ak)}

T ’_;\.;n—_-_'fsint.(ém-*)ts 9,
-é' i < e . - 3 - T e o ® v, 7_9'5\
T imeq S e{mri)9, -9, ot '5.7-88)
Hence tke distortion terms ave
p=2 Lo sal(em-1)6, +9, ]
' T4m~1 F 4 X
T P sin L(4m+1)¢k-¢k] 9734,

The zxXzct amount of distortion oaserved at the DPLL output (t_he outpus
of =z _ow pass Iilter) depends on the modulation (co }o We consider the
case of consian: moduletion (& frecusacy daviation from the carrler) end
sinusoidal modulation.

I the input signal is deviaied frox the carrier by Af ¥z, thea the in-
SuUt phase @k is given by
ndifi
P = k2 z/zs
Using the linearized model of Fig. 3.7-1, we cor.c...de that the first order
DPLL tracks thls deviation with a lag in phase:
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®, =0

X - 2TLE[ (&/mE G (3.7-32)

with 3, the 100p gain. Hence this distoriion terms are

LAl o ra e per -
D=5 oo stnlk2mam A/ - (4m e si/(4/m)E G ]
4 1
T dm+1 sm[f‘_z“*m Afff, - (4m+1)2ZAf[(4/m)E G 1 (3.7-33)

We observe that when the input is a frequency deviation, Af Hz, the har-
monic distortion is at the frequency 4mAf Hz. Its amplitude is bounded
by 4

8m

Dl=s - w7 (3.7-34)
and its power is bounded by
: 1 4 8m
= = -
ND 201097§ T lem-1 dB (3.7-35)

Now the noise in Eq. (3.8-35) will not necessarily be found at the
low pass. filter output since the frequency 4m Af Hz may fall outside
the tilter passband. The filter is set to the maximum modulating frecuency,
'fm = ( Af)m/B. and therefore Eq. (3.7-35) does not apply if

af > £ /4m (3.7-3€)

For example, if we are working with fm = 200 Hz, (Afimax = 800 Hz,
and m = 4, then only frequency deviations less than 200/16 = 12.5 Hz
contribute harmonic distortion as per Bg. '©.7-35). This is not to say that
frequency deviations greater than 12.5 Hz contribute no distortion at all;
they do contribute but not as a result of the 4m *# 1 VCO harmonics. i
we tabulate the harmonics generated by the multip:ier, eventually we find
one that folds down into the £ baseband, and since the VCO harmonic
smplitudes decreuse as 1/n, the noise coniridution will certainly be with-
in the bound of Eq. (3.7-35). ,

Next, consider sinusoidal modulation with modulating frequency fm
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and modulation index 3:

= Bsiak2wf [f . (3.7-37)

Accorcing to the linearized 100p the VOO phase i{s sinusoidal ; ;
®, = Asla(x 2 [f_+a) (3.7-38)

where

Ad® = 3 £G/n =3 (3.7-29)
1-(124G/")2 zgejmm/fs

The harmonic distortion terms are

4 1
D ™ 4m-1

sin [ (4m-1)Asin(k20E_[f +a) + Bsink2wf [f ] '

b 4m+1 sin[(4m+1)Asin(k2ﬂf [t +a) +Bsink27f_[f ]  (3.7-40)

Now i <<f_ sothatinEq.(3.7-39}, z ~1 and A ~B, o ~ 0 aad the

distortion is approximately given oy

4 8m ”_
D= Tomi-1 sin(4mBsink anm/fs) (3.7-41)
It foliows that the harmonic distortion comains odd harmonics of the
modulating tone. The émplitude of the fundamental frequency (fm) is
negligible in comparison to the signal amplitude. The (2n+1)S' hammonic
distoriion is

8m

I")Zn+1 ™ 16m® -

T 21, ., (4mB) sink 27(2n+1) £ /f (3.7-42)

where )‘p is & Bessel function of order p, and the corresponding noise is

4 8m -
ND & 20 logﬂ. T lemi-1 I2m+ (¢m8) dB (3.7-43)
2n+1
Again, we must be careful and remember that only those harmonic ire-
quencies passed by the output filter will contribute to the output distortion.

Eq. (3.7-43) may be bounded by realizing that 4mB 1s large and using
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asympuotic expression for the Bessel function:
2 :
L&Y~ wa cos (x -nw,/2-7nf4) (3.7-44)

Zeace lIn(x) | s/2/ntx and

8m 2

1 4
< sz _om_ ___ <
N < 20log75 7 [gn?-1 vvomp (3.7-45)

entl

. 3.8 BExperimental Results

The first order DPLL was tested and signal-to-noise curves optain-
ed for sinusoidal and constant offset modulation for modulation indices
of 3 aad 10. The parameters used were;

sampling frequency, fs = 50 KHz

loop gain, .G = w[20
frequency deviation, 4f = 630 Hz
carrier frequency, fo = §5.125 KH=z (3.8-1)

Tke test facility is shown in Fig 3.8-1. The carrier amplituce is ket at

2 volts peak ( input signal power = 3 dB J. Tor coastant rodulason

( a frequency deviation from the carrier ) the disteriicn analyzer is oot
required and the output noise is measured at the fiiter output. {Th2 3alian-
tine meter used does not respond to d.c.; heace its reading does not inzluce

the signal power.)

3.8.1 Cenerstion of the IF Noise

I order to generate the IT noise, a speci:il zechnique was emplcyed.
Ovdinaiily, one could “rectangular” band-pass fiiter a wiite noise souce;
however, it vwas difficult co build such a bandpes: fiiter when BIP= 1868 =2
(for 3 = 3)or BIP = 1320 Hz {for £ = 10) and fo = £3.125 XXz, requiring
Q ~ 30. The technique used explicitly generatad tha roise according to its
bandpass representation '

n(t) = n,(t)cos2mEt + 1, (t)sin2nf (3.8-2)
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wiere nl(t) anxa nz(t) are indeperndent wiaite noise sources bandiimited

o) BH/ 2 Hz and having equal power spectral deasities. A blocx diagram
{liustrating the ecuipment used appears in Fig 3.8-2. A Gerneral Radic
Caussian white noise source is filtered using a four-pole {filter to ger
nl(t); n 2{:) is obtained similarly. Both nl(t) and nz(t) arc then mu  Jlied
DY cairicor terms and the two producis added using a resistive adder. “he
s0° phase shiift between the two oscillators is gquaranteed by syncaronin:-
ticn: the sync out signal of the Wave Tek 132 is precisely 90° out of
phase with its cutput signal. Wien maasurements were taken on ine DPLL,

tae muitiplier outputs were adjusted for equal power output.

3.8.2 Results for Constent Modulation

For the case of constant offset modulation the carrier is detuned oy
Af =600 Hz to 53.725 XHz. The outptt signai is constant and using the

linearized model,

Yk = 21'!Af/fsc- = 0.48 wvolts

which corresponds to the output signal power

- 2 _
S° IOIOng = -§.4 dB

The output quantization noise is calculated from Eq. (3.7-18) and the re-

sults are:
B=3, Nq = -092,4 dB (3.8-3¢&)

B=10, N =-107.6 dB (3.8-3b)

Tac reason for these extremely low figures lies in the fact that we
are using a 50 XMz sampling frequency on a signa. bendlimited to 200 Zz
(for B = 3). As a result of the mammoth oversam;iing, the quantizaticn
noise is undetectable. The question one wants ¢ &sk, then, is can the
sampling frequency be reduced ? In fact, reducing fs provides more compu-

tation time. The answer lies in the design equation, Eq. (3.5-9), obtained
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e acas N omam e e o Al b NN ~a [y =~
IISW conoLdeding the VSO aarmmonics:

m S f /11.28 A% {5.5-9)
53

-~ aaes e em - 3 Ef oo - (E Ny 4 - e - S o A
Cag must zay a price for reducing £t eitner Af ar m rnaust be recucad.
I~

New wisa i = 50 X¥z ws are using 4= 800 HFz and == 4. Cemainly

-

aanct recuce A sigmificanily and recducing m results iz distomica

&
(¢}
)

conrisuied oy the VCO narmonics. 30 we use :‘S = 36 Koz aad cerclide

that the outpul signai-to-noise rai’ ; will certainly not be limited dy <he
guanmization noise.

Figs. 3.6-3 and 3.2-4 are the exgerimentally citainead resulls -
constent modulation with 8 =3 and 3= 10 respectively. The thermel

a2
noise curve sa/ho = 38

§;/m £ is superimpcsed 1 esch case.

The first cbsarvation is that both curves levil o as amtisinated.

Fcr 8 = 3 the horizoatal portion of *he curve comrrassoncs 10 NG = ~£55Co
waile Jor 8= 10 we ha\;e No = ~§1.5 d>. As mentioned above, this Iz =5t
due to quariization; it is due 10 the phase jitter between the camrier cscil~
lator and the D21 cilock. This iitte: was observed on the sampled zaier,
whose sempied values are theoreuically ¢iven by x{ = -2g35 K7/ 3, & peiodic
secuence. The actual seguence obiained is not periccic ac tie phase jlitter
results ia the sampled sequence x = -2cos (kT/8 + é‘k), witz 6:k represen-~
ting the jitter.

Usicg the measured output noise, we may calcuicie the oscillzzor
jitter. Let the phase jitter sequence, €:<. have & variance © e2 , indesan~-
dent o Kk, and let ihe phase jitter be independent from sample 1o samgle.
Then assuming the D/A seguence “locks like"” impulses to thz suiput low
pass Iiilter, the power spectral density of ihe phase jitter is coastant and
given by

o a2
G, = 0./t

with f_the sampling frequency. The linecrizez 3205 has the transfer
<
function
H() » 2mi/ st
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whore tae approximation is valid ‘or £ | << £ - The cutput phase jitter

noise is

‘a
. 2, 2 2 2 [27\3) fn
- =‘ Y = - S—
= | emmetelina - 32 (Z) (&)
-f
m

= . P’
Using the measurec viiue, k_. = -%8.5 ¢B we Sinc G

e = 0.34 radien.
This value is not caused sims;ly by toe zkase iitter between the cartier
osciilator and sampling c.ucX, but &lso represents sny input signal dis~
tocriion from a true sisusoid. '

It the laboratory the carrier oscillstor was srcmnized i taa
samp:ing frecueacy in an atiempt 1o —educe the D214 ouiput noise. The
syacironizetion rrocedurs required dividiag the saxpiing Hrequency by 16
via & ccunisr, and exiracking the seventeenth harmonic of the resulting
squere wave, thus iasuriag that ; =(1i+ Ilia)f . Tte effect of syacaro-
nization was a reduction in the outsit noise of 5 &B, which correszoacs
€0 @ phase jitter vasiance of 0.11 radian. As meaiioried above, even il
were possinle to perfectiy syncuronize the carrier and sanmgling frequencies,
any distortion in the sinusoidal nature of the carrier signal introduces an
efiective phase jitter, as the sampled vaiues are in error ircm theisr theor-
etica: values.

The synchronization hardware must be removed when the DPLL is tested
with modulation, as it is impossible to bath synchronize the carmrier and
modulate it simultaneously. In practice, the carrier frequency is derived
using a anarrow band, wacking phase-iocked loop, and the s arpling frequen-
¢y cerived om it.

~ae spectrum of the outpit jitter was determined experizentaily =¥
measuring the output power as a iunction of the locir 55 ilter clidll fte~
guency. Tae result was that the ovtput specirum i5 zirapolic which imzlies
& white input gpectrum, as the D2LL diffe:er:tia;es w.e input phase.

The secord feature of the experimentally obtzined curves is the loca-
tion of threshold. For B = 3, threshold occurs when S:/ nf_ =21 ¢B; fcx

i0+



trs

S = i(, threshold is at 27 &

.2.3 Resuts for Sinusaidal ®i-Zula*on

The first order DPLL was tested with sinusoidal modulatioa
{9, = 2sink2mf_ /i) with 8:=600 Hz usiag §=3 and 8=10,
tesuiting in f::x = 200 Ez and 60 Rz respectively. The ouiput sigaal
is sinasoidel with emplitude A and phase a caluclaisd from the DPLL

transier functiozs

’ £ z .
i+=G - : N r
w 1- z‘& i z= e] zrfbmffs
FPor both fm=200 Hz and fm=60 =z, we have
ej mfm fs 53 1
and q. (3.8-4) ylelds
A m 2WAf[f G = 0.8 volts {3.3-3}

_The output sigral power is

s, = Wloga%j2 = -9.4 da (3.8-3;

whick is 3 d3 below the signal power for constant offset modulsticn.

This is, of course, expected as with constant cfiset moculation the carrier
is always deviated by 4f, while with sinusoidal nodulation the carrier
deviation is varyinc from + Af to - Af,

In the experimental setup the output low pass fllter is set to £ Hz.
Hence the noise measured at the output does not include the third harronic
distcr:ion generated by the VCO harmonics. Also, this output fliter atten-
uates the signal power an additional 8 d3 so thet tte experi:nentaliy obtaia-
ad signal power is -9.4 - 3= ~12.4 dB. Hence we expect the signal-to-
noise curves to level off 6 ¢B below the corraspoading curves for constant
offset modulation, as the phase jitter noige is the same for both typcs of
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zoduiation.

{a2 experixental results are shown in Figs. 3.6-5 and 3.8-€ io-
=3 and B = 10 respectively. The curves level off at about 34 G5
aad 43 &3 respectively, which are 6 dB and 7 ¢B below the comres-
ponding curves for constant offset modulation, in good agreement with

w

“he exidcizated 6 43 arop.

The values of'§,/nf_ at which threshold occurs are 18 dB for 3= 3
acd 21 dB for § = 10. Thres:zold for 8 = 3 agrees closely with that of a
discriminator {19] as expected frox the computer results with simulaied
spikes. Also notice tnhat with sinusoidel modulation, threshold occurs at
a lower sil nf, value than with constant offset modulztion. This is ex~
pected as the constant moduiation keess the carrier deviated 1o its maxi-
mumr vaiue where it is most suscepticie t0 spikes. Sinusoldal modulation
deviaies the carrier t0 its maximum only momentasily, resuiiing in fewer
input spikes at the same carrier-to-ncise ratio. keace wa ave iawer out-

out spikes with sinusoidal moduletioa and thresnoid is improvec.

3.8.4 Results Using a Three-Bit A/D Coaverter
The extremely small value for the calculated quantizetion nois:
prumpts us to ask how the g:antization step size affects the DPLL ser-or-
mance. We anticipate that the level porrion of the signal-to-noise cuive:
will remain urnchanged, as the phase jitter aoise due to the incomi.g sig-
nal wiil dominate the quantization noise. ii the rest ¢i the curve alsh
rexw 3irs vachanged, then we can greatly simplify a2 harcdware required
tv ¢»ducing the number of registers, gates, adders, etc, neeced. i
However, decreasing the number of bits deteriorates the phase error
signal. We are working with a maximum errar signal of 0.48 volts; assum-
ing this signal is uniformly distributed, the erzc: .ignal power is -~ 17.2 dB.
Using ten bits, the step size is 10/2 10 o +C mv. and the quantizetion
;olsa is -50.8 dB. Changing to three bits brings the quantization noise
up to - 8.8 dB, and the phasge error signal is now lost in the quantization
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naise.

The affect of the number of bits employed was determined exper-
imentally. The desired number of bits were taken from the A/D output
and the unused bits tied to the complement of the sign bit. Fig. 3.8-7
fllustrates the DPLL performance using only three bits at the A/D con-
verter. (this is the smallest number we could use, as two bits would
movide only leveis of #2.5 v. and O v. Our carrier amplitude is 2 v.
ang hence »all sampled values would be truncated to 0 v. This repre-
sents a practical, 1ot a theoretical problem.) The step size is now
$=10 [23 = 1.25 v. and the calculated output quantization noise is in-
creased by the factor (2')2 = 41 dB to -51.4 dB. The quantization
noise plus theé -47 dB jitter noise gives a total output noise of -45.8 GZ;
the measured noise is - 44.8 dB.

More important than the leveling off noise is the effect of the use of
fewer bits on the threshold performance. With 3-bit operation, thres hold
occurs at 24 dB. whichis 5 d3 above the value for 10-bit operation.
Ffurthermore, this value is worse than that for a discriminator, indicating
that spikes appear at the output when no spikes are present at tke input.
Observe frpm Fig. 3.8-7 that threshold occurs almost immediately as we
enter the thermal noise region--alriost no 45° slope region exists. We
conclude that the large quantization noise in the phase error signal plus
the input thermal noise sufficiently perturb the phase error so as to cause
the DPLL to occas ionally lose lock. The trans ient required to regain lock
produces a spike in the output, even though no spike was presen: at the
input. '
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CHAPTER 4
THE SECOND ORDER DIGITAL PHASE-LOCKED LOOP

When an integration path is added to the foward loop filter of
the first order DPLL, a second order DPLL results. The additional in-
tegral path gives us an additional degree of freedom (the integral path
gain) so that we have more flexibility in designing the second order -
DPLL to meet the design equations of Ch. 3 as well as to produce a
better spike response than the first order DPLL.

This chapter deals with the properties of a second order DPLL,
including the design procedure for determing the loop gains, the hard-
ware implementation, and the theoretical and experimental resuits.

4.1 Second Order DPLL Structure and Equation .
The block diagram of the second order DPLL appears in Fig. 4.1-1,

.The only differcice between this and the first order DPLL is the integral
path present in the forward loop filter. This integrator is realized in a
way identical.to the VCO integrator design (in fact, the second order
DPLL was implemented by time-sharing one integrator for both the VCO

. and forward loop filter; the details are presented in Sec. 4.4); the pro-
portional plus integral filter is shown in Fig. 4.1-2. Representing the
Z-transforms of e, and y, by E(z) and Y(z) respectively, the transfer
function of this filter is

X(z) S SR
= g, +g (4.1-1)
E(z) 1 2, -1

and the oorrespo;xdinq difference equation is
Ve ¥ Yoy * (9908 - °1ék-1 . (4.1-2)
As with the first order DPLL, we have
¢ = (% *.“k) 8q(km/2m+ ®, ) (4.1-3a)

X, = -2008 (k7/2m + @, ) (4.1-3b)
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* Gyco¥x

woere

e = error signai
o, = inpul if noise
Qk = input phase
.fi-‘k = VGO phase

uvoo . \.’w gain

(4-2-3C)

. Ccmhmmg Egs.. ‘4.--2 ond_,(é;l}s) vialcs the eque icr the sesoud
order DPLL: ' L
h;:\ = ';37«- -._‘A ':‘
F*er T 2% T %ker R
- ={&. +G,) 2005 {3 /zh.-r:p-}aq(xr,r' =+ 3, )
+ 2.Gzcos [(k=~ziyfe=~ S isgifx-)m/em~ &x_—'lj
= #{G.*G)n sg{kv/am+ &)
-G k-iw/2m + "‘. . S LY
uzr.,‘Sq{(.\ iw/em ‘?‘_13 . N }

waere C ,wnvtional loos gain and C-2 integras
ax:ected. this is & second cder, nonlinesr gixf

tne VCO phase.

-

£.2 Stabili~y Condition ca the Linza-izad Mrodsl
When the phese differeace liween wae input

( << %[2), the phase error is given by

e, ™ (&fT) (O -9

i)

a1

and the lincarized model of Fig., 4.2~1 mir 2.

wodel to {ind the restriciion on the loap guaia, G,
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The characteristic equation for.the linearized model is

-1

1 z

2 -1 Joyeo

whick simpiifies to

4 { N
1+r~.Lgl+g = 0 (4.2-2)

14z}

2 )
-+ [(4/")(G1+62)-2J-r [1-;4/n)<;1] = 0 (4.2-3)

wits Gl = gl-va = proportional loop gain

Gz = qz-va = integrei loop gain. )
The DPLL is stable if and only if all of the roots of Eg. (£.2-3) lie in~
side the unit circle, |2 | = 1. The bilinear transformation

z = (s+1)f{5~1) (4.2-4)

_ maps the interior of the unit z-plane circle onto the lefi-half of ike
s-piane, eazbling the appiication of the Routh-Eurwitz test on ihe re-
sulting po.ynomial in s. Using Eg. (4.2-4) in Eq. (4.2-3) secures

(6/mG,s° + MG s + [4- (4/n)(2G,+G,)I= 0  (2.2-5)

for which the Routh-Hurwite test gives the restrictions for stability:

(¢/maG, >0 (¢.2-5a)
(¢/m)G, >0 (4.2-6D)
4 - (4/7)(2G, +G,) >0 (4.2-6¢)

The first two conditions are obvious and the third is satisfied when we
use gains of the form w/&- ZN. with N a positive integer. Therefore
when the phase error is small, the second order DPLL is stable regard-
less of how much scaling is introduced. Of course, using this linzar
mocel, we cannot conclude anything concerning :he DPLL response to
arbitrary initial conditions (ini*‘3l integrator value, initial VCO phase),
as this acquisition problem involves operating initially with }arge pyase
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4.3 Design of Second Order Loop Geains
To enable comparison to the first order DPLL. we shall design

tha second order DPLL to demodjlate a maximum frequency offset of
00 Hz aad use m = 4. The two design equations developed in
Sec. 2.5 and Sec. 2.6 become

(&) oy = 035 (4.3-1)

£,/8 - 1200 > B ‘ (4.3-2)

e = phase error signal
BL = linearized second order DPLL bandwidth
£

s

= sampling frequency = 50 KHz.

As the second order DPLL tracks frequency deviations with zero
phase error, we consider sinusoidal modulation in connection witk the
condition of Eq. (4.3~1). Let the modulation be at the frequency fm Hz
with modulation index f8, so that

®, = Bsiak2nf [f (4.3-3)

Theenorsignal.ek.i.sthan_sinusoidalwuhampumde A and phase a
given by

2
o _ (4 /) (==1)
Ae™ = B Z+z@)NG, +G,) - 27 + [1-(4/T)G )

pmed2infs

(4.3-4)
as fm <<fs.we have the approximation z ®# 1 ix the denominator and
[z=1]= Zsinﬂfmlfs & gwi /f, inthe numerator, yielding

A= (2ﬂfm/fs)2 B/G2 (4.3~5)
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dence, condition Eq (4.3-1) is a restriction on the integral loop gain:

2 ) LY
G, = g(znfm/fs) /0.35 (4.3-6;

Usiag fm = 200 Hz, 3 = 3, fs = 50 Ktiz, we hava
(?v2 2 0.0054 (4.3-7)

We choose

G, = w/5-2% =« o.0008 (4.3-8)

2
We cannct satisfy Eq. (4.3-2) as easily because one cannoct find
a simple exprassicn, Lot aven an apaoximets expression, for the D2IL
bandwidth, B , in terms of tha loc) gains G, and & G . Therefore we

1
calculate the magnitude of the LPLL transfer mction

s

[ PR P o e g //r
,

)
g
o,

- z4fTY(s, +9,) - (4/M)g,
) = —3 y

z* + z{(4/n)(elfez)-23+ CI-(%IW)GI 3 27 o fi

14.5-9)

as a function of © and determine the bandwicth graphicany. In

Eq. (4.3-8), G “2 is fixed by Eq. (4 o-8) and G takes on the discrete
values m/5+2N with N an integer. The restr‘cdon of Eq. (4.3-2) is
equivalent o BI. < 4.05 XHz and if we require a factor of two in the
inequality, we find the possible values of N are N 2 3.

« The field of second order DPLL cancidates is narrowad by con- ‘
sidering the response to the simulated noise spike inirocuced in Sec. 3.7.
As before we superimpose the spike on sinusoidal modulation, solve
the DPLL difference equation, Eq. (4.1~1), anc examine the solution to
determine whether or not the DPLL follows the splke.

The computer program which achieves iz .s shown in Fig. 4.7-1,
with Table 4.3~1 identifying tie variables. This prcgram is essentially
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C=-FOCAL» 1969

21.S
Glel
8l.15
T 51.28"

62085
§2.12

B2e11
82.12
62.15
32.28
32.25
32.360
82.31
£2.35
e2.48
52.45
€2.58
28.90
=

A NaT»E

S ¥=3.141595S Gl=t/5%2tN;S G2=u/Ex2t75S PK=355 1K=3
F ==258,1,276;00 2

QUIT -

S H=38FSINC2¢E+26C+K /5636651 (Ke<T-K>)2.15
S EK=<2+E>/2+<2-T>¥FCOSC2%WeK/TI /2

S Ed=-E&*FCOSCX2#E/3+H-#( 1-FCOS<WA/T>3)
S EX=EX*FSGNCFSIN<K*¥E/8+PK>)3G0TO 2.2

S Ex=-P*FCOSCK*W/8+H)*FSGNL FSIN<K#§/3+PX>]
S IX=IN+G2$EK; S PX=PX+Cl#EX+IK

1 (K)2:952.3-,2.35

F X=0,15635T “.%

T #

I CK/13-FITRCK/Z18))2.952.4,249

F X=6,1,FITRC40+<13/3>*PKI3T " *

T "2, 8F X=Bs1,48T ™ "

T o™ 1

c

Fig. 4.3-1. PFOCAL program to solve the second ordar DPLL equation

for the

case of sinusocidal modulation plus a spike.
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Computer Variabie Equation Variable
' T - , ;mke duration, Tspike
E T =intmua spiis emplitucs
Gl ) — pmpoﬁ;nal ~Izzop gain, GI
Ga , integral loop gai:, G,
- H & | inut phase, @,
i:x - phase error signal, & ‘
X - | integrator value 3:
PK - VOO phzsa, 3, !
. : ' }

Table 4.3~1. The correspondence between the verieblas appearing
in the program of Pig. 4.3-1 and the DPL-. cguztions.
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the same as that for the first order DPLL, except for line 2.20 which
integrates the scaled emor signal (G2 EK), and includss ti.s value (IX)
in updating the VCO pkase (PK).

The computer results obtained for 3 N = 8 are not very im-

. pressive. In all cases, when & constant amplitude, 32-sample duration
spike is introduced, the DPLL loses lock and does not immediately re-
gain lock. Tig. 4.3-2 is the VCO phase for the case N —4 and spike
duration 0.64 msec. It is clear that the DPLL Las lost lockin response
to the spike, andeveniflockisﬂ.nallytegained theom;putnoisegen—
erated during the transient period severely deteriorates tte DPLL output,
making it worse than the first ordéer DPLL. Hence it is impossible to
find a second order DPLL which meets the phase error requirement and
responds saffsfaetorny to input noise spikes.

Iocontinuetk&seamhforasecondorderDPI.I.requues cnanging
theintegralloopgunaudthereforechnngmgthemmdmumphaseemr
signal. The phase error condition was based upon having equal quanti-
gation noise and harmonic distortion at the phase detector. We have
already seen that the quantization noise (and hence the error signal har-
monic distortion) is not significant compared to the phzse jitter, and so
we shall decrease the integral path by a factor of 2 (1o the next availa~
ble‘gain) and thereby double the phase error.

Ustng G, =7/5-2", the bandwidth requirement s satisfied for
N 2 8, For N = 3, the secon. DPLL follows a 32-sample constant am~
plitude spike as shown in Fig. 4.3-3 and therefore we expect this second
order IPLY to have an identical threshold to the first order DPLL.

Setting N =4 and introducinga 32-sample, constant amplitude
spike, we obtain the response of Fig. 4.3-4, in wkich the DP.LL does not
fcllow the input spike. Widening the input spike to 40-gsamples yields
the response of Fig. 4.3~-5 where the VCO phase initially follows the spike
but recovers and suppresses the spike. FPurther widening of the input
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a 32-gample, constant amplitude spike with N = 4,
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Fig. 4.3~3. Second order DPLL response to sinusoidal modulation plus
a 32-sample, constant amplitude spike with N = 3.
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spike o 40-samples results in the DPLL reproducing the spike, as
illustrated in Fig 4.3-6. If the minimum spike sampltude is dropped to
i vols, the DPLL ro longer fcllows the 49-sample spike; Fig. 4.3-7

_ illustrates this, Keeping the minimum amplitude at 1 volt, the spike
curciion must be increased to 70-samples before the DPLL tracks the
spike.

For N =35, the DPLL Jollows a 46-sample, constant amplitude sf:ike .
ang iollows a 68-sample, 1 volt minimum amplitude spike.

For N= 6, we find that the DPLL tracks a 40-sample, constant
amplittde spike. If the minimum spike amplitude is reduced 0 1 volt,
and the spike duration increased to 60 samples, then the DPLL lcses lock
as a result of the infmt spike. The résponse is shown in Fig. 5.4.-8,
where we see it takes two cycles of modulation for the DPLL to regain
lock.

Thus the choice for thz proportionsl path gain is between N = 4
and N = 5. In order to eliminate one value we coasider the spike model
svperimposed on constant modulation, which resuits in a 600 Hz fre-
Juency deviation from the carrier. The computer program is modified so
' that E= ® = 21k 600/50000.

For N = 4 the DPLL responses to various constant amplitude spikes
are illustrated in Fig. 4.3~8. In (2) and (b) the spike duraticn is 40 ana
43 samples respectively and in both cases the DPLL does not follow the
spike. a 44-sample spike is introduced and the response; (c), shows
that the DPLL now follows this spike. When the spike is again widened
to 48 samples, the VCO phase develops an error of 4 radians (Fig. 4.3-9d)
‘rswiad of the expected 27 radians. This occurs because of the DPLL's
(2.0 .o 7. *vansient response, which is observed in Fig, 4.3-9c as an
1w .ot .0 s the steady state input phase. In Fig. 4.3-9d, this under~
shoot becomes sufficient to bring the phase errc: bayond the unstable e-
quilibrium point .if Q)k -$k= 3w, and so steady sizte is reached at

% - fpk = 4m, Hence the DPLL follows the 46-sample spike, and genersies
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an Qutput spike having an area cf 4 It is possikle ior the urndershoot
to jenerate a O phase error, as iliustrated in Fig. 4.3-9e, where the
iaput splke lasts 60 samples. Eere the DPLL output contains a 6w-area
spike ia respoast tc the input 2n-area spike. _
Next consider N = §; the spike responses_zppear in Fig. 4.3-10.
in {a), we see that the DPLL deos ro: follow a 32-sample spike. This
renains the case until the spike durestion.is 38-samples, at which point
the DPLL iollows the spiké. shown in (b). Increasing the spike duration
to 39 samples, the DPLL develops a 47 radian ervor, again because of the
underdamped response, as shown in (¢). Note however that this DPLL with
N =5 is more underdamped than the DPLL with N = 4, as here, a 39-
sample spike generates a 4w-area spike, whereas previously (N = 4) a
.0 -area spike was generated. This underdamped behavior causes trockle
wher a 45-sample spike 1s introduced; Fig. 4.3-10d shows that the VCO
slips severai cycles in an. attempt to relock to the input, and hence gen-
erztes a large output spike. Xotice that in Pig. 4.3-9d the VCO has not
ye: regained lock and the output spike generated will have an area of at
least 8w, - 7
The fact that the DPLL having N = 5 is more underdomped thaa that
with N =4 is further bome out by examining the linearized DPLL trazsfer
function. The two curves are shown in Fig. 4.3-11 where we immediataly
-aotice the larger resonant peek for N = 5§, Of course, when the phase er-
ror is large, the linearized model does not apply, but when the DPLL is
close to its equilibrium value, we can expect a larger overshoot from the
N = 5 loop than for N = 4.
Therefore our choice for the second order DPLL gains is

= nf5-2? {4.3-102)

= mf5-27 (4.3-1Gb)

G,
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1. Iardware Implementation
The block diagram of the second order DPLL is shown ia Fig. 4.4-1.

The proportional loopgainG -—n/s-z is obtained vsing unity gain in
the forward path, a 1/2 scaling for the explicit YCO gain.andanimpz..-
cit VCO gain of w/(5/2), obtained by using the second mos: significant
bit of the VCO register for the VCO output. This is the maximum implicit
VCO gaia availahle, as the most significant bit (the siga b:ii) is always
1 as a result of adding the VOO carrier term (W/2m). The constant offset
rep;esenﬁngwla is the binary word 1000100...0.

Inmdamehﬁnthemmmc} =1't[52 we must add
ascaungoi 1/2 totheiowatdloopmtagralpath. We choose 1o place
mmmmwmwwmmmo&
Werﬂwmwthelm Inorde.toavddtmncationofthreebi.s.
ﬁuwaxﬂloopintegrm(adderancregister)eonsistsoflsms. Hence the
output adder, A, in Fig. 4.4-1, is also a 13-bit adder.

. The D/A coaverter at the output has a 10-bit capacity and so  trun-
cetion error is intioduced. The output is fed back to the VOO through a
1/2° scaling and to avoid truncation, the VOO operates using 18 biis.

As previously mentioned, the foward loop integrator and VOO inte-
grator are time-shared, which is to say that adders A, , A,, and A, i
represent the same piece of hardware. Although the foward loop integrator
register contains only 13 bits, it is easily converted to an 18-bit word
by adding five additional bits whose values are the complement of the
sign bit.

The schematic diagram of the second order DPLL and the associsted
timing diagram appear in Fig. 4.4-2. There are two adders with the addi-
tional saturstion logic and three registere: an cutput register, a forward
. loop integral (FLI) register, and the VCO register. Tae transfer gates pro-
vide a buffer during the integration process end also provide flexikility
in the timing. To understandthe operation, refer to tae schematic and tim-
ing diagram. The sequence of events is:
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Forward Loop Integratioa {performed during AT 1): The sciied
rror signal (signal @ ) and FLI register (signal @ } are added
and the result is stored in the FLI register.

Cutput Addition (AT 1): The error signal and its integral are
added and stored in the output register. The D/A conversion also takes
placa at this time. ‘

VCO Integration (AT 4 and AT 5): First, the scaled cuiput (signal
@ ) is added to the VCO register (signal (@) ) and the result stored in
the VCO register. This occurs curing AT 4. Naxt, the VCO offsgag {signal
@ ) is added to the VCO register (signal (@) ) and the result is stored
in the VCO register. '

. The second bit of the VCO register is then used to multiply (exclusive-or
gate) the next input (xk+ 1). generating e 41’ and the sequence begins
again.

)
e—

QOutput Noise

As with the first order DPLL, the second cder DPLL output contains
quantization, thermal, and harmonic noise. In addition, a truncatioa noise
is introduced as the D/A converter uses only tea of the thirteen output
signal bits.

4.5.1 Ouantization Noise
: The input signal is quantized using B bits and a quantization step

size S, introducing white quantization noise r.aving power speciral den-
sity GN (£) given by
Q

2
Gy @ = 8" T, /12

where 'rs is the sampling period. The linearizec second order DPLL
transfer function is
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(34
'

£ & - -2
2 =2{59;.% 0 * 7928 co "B * (1 ~ 75 Cyeo)

where gl.gz. and GVOO are identified in Fig. 4.2-1. For
2= exp (j2ﬂf/fs) and f << {_ = maximum moculating irecuency, we

Lhave z &8 1 as fm << fs' aré 2q. (4.5-1) bacormes approximately

¥(z)!

)l = *;(;)-i o JEEE » 2L Gyog £ {4.5~2)

That 1s to say, the linearized DPLL wensfer functio:n is appreximately

thet of a differentiator. The ouiput quantization noise is

L..B- ) 2 2' ) ‘3 .
Nq = S IH l GNq (f) e = (zﬂs/va) \mlzsi /18 \é'a-‘:‘)
~fm
£.5.2 Thermal Noise
Since . second order DPLL bechaves approxir.ate.y &as a differsa-

tiztor, the output signal-to-noise ratio at hich input signal-io-noise

ratios is given by the results of Sec. 3.8.1;

S, /N . = 38 2 8; /N i for constant modulation {4.5-4a)
- §. 2 £, A 3 A
S5 /No =3 B 8, /Ni for sinusoidal modulation (4.5-4D)

Again, these results are identical to those for an ideal diffsrentiating
discriminator.

4.5.3 Truncation Noise
The effect of truncating the number of biis used is essentially the

same as quantizing; hcwevér, in truncating, we quantize a finite rumbder
of levels into a subset of these levels. The expression for ‘ne cuantiza-
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iox noise assumes the error {s unilormiy distributed. Thic is not
strictly irue foo truncation, as the Jdiscrete values give rise to discrete
&XIOTS .
—et the D/A coaverter oparate using N bits and have a step size

S vsits. Assume ine binery werd aveilsble hes M + N bits, and the
last M bits afe lost in the /A coaversion process. Then the ercor cor.-
mit:ad tn truncation is 9, 28/2M, =zg/2M, | | ., 2™ - 1)5/2M vouts.

T.nermore, zero error is made in 2N of the 2N+M possible numbers;
nonzero errors are each made in 23! numbers. The error prosahility
density function is thus_a set of impulses, the impulse &t the origin hav~
ing area 1/2M, while the impuises at *pS/2M, 1sp= 2M_ 1, having
area 1 /2M+1. The variance of this distribution is

° 2M-1 . 2 e .
o 2= I (es/2?%2™ = T ooV ™y ks
p=-2M+1

Ncte that if M is ilarge, this reduces to the resuit for an error uniZormly
disiributec over the interval [-S, +51

Assuming the truncation error is endependent frcm sanmplie-to-sampie
end that the D/A staircase looks like a sequence of impulses to the out-
put low pass filter, the power spectral density of the truncation noise is
coastant [ 173:

2
- 2 .. = _S__ - -M. - -M-i 5-3°
GN‘r UT Tg 3‘3 (1-2 " )1-2 ) (4.5-3)

with Ts the sampling period. Hence the truncation noise appearing at
the output is

2 2 -M A=M=1 , =
Np = 58 (£, /5 )(1-27")1-2 ) (4.5=7)

where fm is the output filter cutoif frequency.
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<. 7.2 Zarmonic Noise

Tre harmonic noise generated by the squere wave VCD is calcu-
ialed in @ simular manner as for the iirst order DPLL. ™+9 chenges that
oast made are:

1. Thé VCO>pr.ase is now calculated using the second order
DPLL lineer model.

2. The hermonics generated at the error signal sre filtersd Ty
the proportional plus integril fiter in the forward path.

As developed in Sec 3.8.4, the distortioa terms are

- _ & 3 PN
T = & ool sin[({.m 1,8, +9, ]
T Imil S [(ém-i-l)mk ~® 3 4 .5-8)

Por the cas: of constant modulation, the input is deviaied o
the carrier frequency by 8{ Hz anc

9, = k2MAL[f (4.5-8)

the second order DrLL linearized model, the VCO iollows this input

with zero phase error, 9, = ©, » and the distortion terms become:

k
D = ;—*T— = 82’&—- sink 2m4m A2 fE_ (£.5~20

As with the first order DPLL, the harmonic distortion occwrs at the Zre-

quancy 4m 4f Hz. The proportionzl plus integral filter has the trensisr
function
6 = g, + 9, L ,,5 _ (4,511
l=agz l zsej.?.ﬁ: fs

If the harmornic frequency (4m 4f) falls withia the cutput low pass Ziiter
cutoff (f )» then the filter transfer funciion is approximately
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.'z'

. i £ 11 £
(2) | 5 = I 27 4 A1/ 9pf/2em B

[ ] &]

(£.5-12)

i

=aTaouic distortion amplitude is

ﬁ;

vitue of the fact that 4x l!:’/fs < f:n/fs << 1. Hence at the cutpat

g, £
‘Dl = '—25—- -i—?’—’-‘-— (4.5-13)
ifa"-1 t%mif
and the autput pover is

4g,%
- - 2°s
ND 2010

3 3 a3 (£.5-14}
/2 (18" -1) ¥ “m Af

When the cantier 15 sinusoidally modulated at £ Hz with modula-
tion index B, wa have '

¢, =Bstakanf_[f {(6.3-15)

Using the linear model, the VCO phase is sinusoidal with amplituce
A and phase o where ’

4 4 4 .
2(2G, +=G,) -G l
a3 3 T 1 T 2 7

4 4 4
3 -l-z(;(-.‘-1 +;G2- 2)+ (1-;;61)

z=e!¥inlls

(4.5-16)

and since again we have z ® [, the amplitude ard phase are approxiastely
A® B, a #» 0. Hence, as with tha first arder DPLL, tr= distortion is

D=2 —2B— gn(anBsinkans_/z )

2 (4.5~17)
16m -1

ard i{t conzrains odd harmonics of the mod-z;..at::_.g imquency The ampli-
tude of the (2:1«-1)8't harmonic at the output is '

144



'D ‘ = 3 8m 2] (4m3) -.—.g..z_f§.__ (4.5 18)
4 - -
2n+l L Isz- p 2eti 21 (2n+1) fm
and the output noise is
N = 200g D, .. [MT @B (4.5-18)
D2n+l 2u+l

As mentioned in Sec. 3.8.4, only those harmatics below the low pass
illter cutoff frequeacy will coatribuls noise according to =q. (4.5-19).

4.5 pr Resuits
) !hééecmﬂaderDPLLwasmsteduslngtheﬁnuwingpmmetas:

sampnngirequeucyf ~_=50tz
mopocﬁonalloopgam,s = n[s-24

'_ml:egmlmopgzim.(;2 = n/5-27
carrxerfrequency.fo = 53.125 XHz

: “modulation index, = 3,10
card&amplhmle . t‘zvolts

rhetestfacﬂitywasidenncalmthesempusedtotesttheﬂrstomer
DPLL, Fig. 3.9-1, including the generation of the IF noise.

4.6.1 Resultsformmgmon
W!ththecardesdevtntedby Af-GOOHz.theDPLLomptRis

coastant:

Yy = WA[Gynf, = 192 vults (4.6-1)
which corresponds t2 an output signal power

s° = 2019;; Y = 5.7 dB (4.6-2)

The output quantization noise computed from Eq. (4.5-3) is

B=10, N = -95.5 dB (4.6-3b)
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Tae tuncation of three bits by the D/A coaverter contributes, according
to 3. (4.5-T)
B=3, N, = -66.6 dB (4.6-43)
B=10, N, = -71.8 dB {4.6-4b}

Withnothermalaoiseaddedtothacarder.themnoise Qeasured

is
£= 3, No = - 35.0 d3 " {4£.6-5s)
3=16, No = - 503 43 (4.6-5L}

As was the case with the first order DPLL, the cuiput noise which dom;
inatas the quantization anc t.‘u:z::anon aoise, is caused b7 the shase j*ﬂ‘.et
be:weenthe carier oscillator and sa:.:pm:g frequency clock. Notice that
this output noise tas a parabolic : zecitun, as zanow:ing the output Hlter
from f = 200 to £ =80 Bz -es-...ax..ale.s @B c-op in ncise zowen;
the Moteacal drop is ‘60[2.0.-) -15.3 dB.

Ihe signal—to-m cxves Sor 3= 3 and 8 = 10 appezr In Figs.
4.6-1 and 4.6-2 taspectively. Bo:ih curves level o= at values close 1o
the correspoading first order DPLL cuives. The curves thea approach ke
thermal noise asymptotic curves ard tiien fall off sherply as threshoid
appears. The input signal-to-noise valuss at which threskoid OCgurs ara

B=3, s /nf = 17 dB | (4.6-63)

B=10, § /nf = 22 dB {4.6-6b)

This is a substantial improvement ower the first order DPLL performance;
“the threshold extension is 4 6B for B=.3 and 5 d8 for B =

Computer simulations and experimental mszsurements for a second
order analog phase-locked loop [14] have producec the results displayed
in Table 4.6-1, where the digital phase-lockzd icop results are incluced
for comparison. Notice thai both analog and digital phase-locked loops
have comparable performances for g = 3.
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Modulation Index Threshold (8, /0f; . GB)

h Taeoretical | Expérimental Experimental

_ —====’=.'~;~:‘ = — w » ——
: 3 ' 165 ° | 165 17,

12 21.2 - 21.8 22 (8 = 10)

S

Table ¢.6~1. Comperison of anslog and digital phase-locked loop
- performance. ‘
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4.6.2 Results for Sinugoid=l Modulation
The secoad order DPLL was tested with sinusoidal modulation

with 4f= 500 Hz and modulating frequencies of 200 and 60 Hz (3= 3
- andf= lorrespecuvely). Usingtheunearmdel._thg output signal am-.
plitude, A, is

z-l)[(i914§92)z—§] |

!
A= 2 22+ (-G +-G 2)-;-(_1-5-(; )i - &5
,_; 'n' '1-, z:‘ejzﬁimlzs
- ’ ; s = zoxogA/f‘ dB (4.6-8)
- »f B=3, 5, = 3.5¢ aB {£.5-5¢)
' . B=10, s = 2.63°ds (4.6-50)

2hecahmlatedvaluesofq antization and truncation are ideatical
tothoseioromstantmnwoncala.latedpreviously. As the output
lowgassmterissetatthemdnlmﬂequency we do not include the
thirdhamonicdistomon. w&nmmemdmiseaddeoattheinput the
measmammumseis

S f:" 8= 3; N_=-359 dB (4.6-10a)

3=m N, = -50.2 dB (4.6-10b)

Thisnoiseis atuihuablewthepbasemtezbetweenthe carrier frequency
-andthesamplmgfroquencyandtaldenucaltothameaauredwithcon-
stant modulation
‘The sxpersmentanv obtained signal-to-noise curves for sinusoical
modulation appear in Figs. 4.6-3 and 4.6-4. Threskold occurs at the
following input signal-to-nolse ratios:
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B=3, s/nf = 17dB (4.6-112)

B=10, s,/nf = 18 dB (4.6-11b)

which represent improvements of 1 dB and 3 dB respectively over the
first order DPLL.

4.6.3 Effect of the Number of Bits

The sgcond order DPLL was modified so that only three of the ten
bits from thé-A/D cnaverter were used. As with the first order DPLL, this
serves to hicrease the quantization noise by 42 dB, but the total output
quantization noise is still negligible in comparison to the phase jitter
noise. However, the phase emror signal becomes lost in the increased
quantization noise, and we expect a deterioration of threshold.

Fig. 4.6-5 is the experimental results for the second order DPLL usizg
three A/D coaverter bits, with sinsoidal modulation and B = 3. Notice
that threshold occurs at an input signal-to-noise ratio of 22 dB, which
is 5 dB above the threshold obtained using a ten-bit A/D converter.

. This dégradation is very close to that obtained for the first order DPLL.

4.6.4 Effect of Truncation Within the DPLL

As praviénsly mentioned, a truncation of three bits is introduced
at che DJA converter, as it can only accept ten bits. We no determine
the effect on the DPLL performance of using ten-bit arithmetic through-~
out the DPLL. This means that after scaling, we truncate the result to
" ten bits, introducing truncation noise as showa in Fig. 4.6-6.

. The noise source N.r corresponds to 8 truncation of three bits,
1

while NT represents a five-bit truncation. From Eq. (4.5-6), the power
2 .
spoctral densities of these noise sources are
' -10
G = 5.5 « 10 watts /[Hz
Ny, /
G, = 6.4 .10 wans/uz (4.6-12)
g,
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sing the linearized DPLL model, the transfer functions relating

- —aa%y w.a

N,. and N, X to the output are respectively

T T
2-1
(D) = ” ,
PUo2teg (A s Sy iAo |
5.2° 5.2 5.2 l REut 7
z=
{
s 4 4
2572 * 0 2) 5z
B ()=
AR U S S S
5.2 5.2 5-2 Lo I/

(4.€-13)

Assuming that these nolse sources are independent, the cutrut roise is

£ . 2
-£- T3 T2
m

Now sir-~e f << f_, we have the approximation for [fl<s =

@ 2 f /g

a/(5-2")

Hy®) ~ 2° (4.5-15)

. and the output truncation noise is N‘f = ~35.9 dB. This is precisely
the amount of phase jifter noise measured at the output and therefore
the output noise should increase to - 32.9 dB when ten-bit arithmetic |
is used. '
The above analysis does r.ot provide any :information about the ten~
bit arithmetic on threshold. This result was ob:icined experimentaliy; the
signal-to-noise curs e is displayed in Fig. 4.6~ 7. First we observe that

the curve levels off at 34 dB, which is the anticipated 3 dB below the
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cusve whare 5o internal trurczlon is perfosi.ad. Seccadly, we notice
. threstold ocours at &z input signai-to~-noise setio of 18 dB, which
is 1 33 above the ociginal value.
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HAS S

THE THIRD ORDER DIGITAL PHASE-LOCKED LOOP

-1 Third Order DPLL Structure 2.d Equation
The third ordar DPLL is obtained by adding a double integral path .

o the forward loop filter of the second ocder DPLL, resulting in the struc-
ture of Fig. 5.1-1. Note that the cdouble integral pz2th is realized by the
addizion of a single integrator following the existing integrator oi the sec-
ont_lim'devDPI.I.. Thegainis}abeled gslgz.mnng:hedeelmegral
path cain (g,/9,) 8, = 9;- _
mmemxmmmmbybk.mmemsmmgra-
tcrommtbyak.wehavetheequaﬂons -

-~ =~
—~—

b = b+ (95/8,)8, 112
& = %1t 9% 8-1-1b)
Ve SO th o g 3-1-1c)

memmmmamwﬁm
‘integral plus douhle irtsgral digital filter:

Y, "2 _“V_ gt (9, tetag)e

= (29;v95)8 _,

tg8 _, (6-1-2;
In addition, we have for the VCO
S+1™ ¥ * Syco¥x (3.1-3)
and the phase error
e, = X, Sq(km/2m+ 3, ) (5.1-4)

Combining Egs. (5.1-2), (5.1-3), and (5.1-4) ylelds thc difference equation
of the third order digital phase-locked loop:
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Okﬂ = uk - a&k_l > ak_z

+(G,) + G,y +Gg)x, Sak/2m+ 8, )
- (3G, +G,)x,_, Sal%-n)n/zm+ B, 3 '

+G,x . NiEx-v/zm+d, .1 - - (5.1-5) |

Gl -gisvmtmmloopm
Gy = 95 Gy ™ istosral loop gota
G"ﬁs'Gvd)-mma_lb_opm

and : _
%, = -2c08(kn/2m + o )+ m, (5.1-6)

hese vk-mm-e

nk-n"nnlso.
mmmmmmuamm.mwm
-munvoomoe.&k.

_ muvcoummmmm 20 phase ewor
is approximately ) ‘
ek - -zé'u(kir[z-‘«- 9,) S (kw/2m + 8))

"'KI")Nk k)-fhmicm (5.2-1)

mmunuuucmmmwmaocmm
mmmhm.s.:-x. We sball find the restriction on the loop

M”m.'.
. The charecteristic equation of the linarized model is
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G G ' -1
4 —2 3 -
1+<1G, + - —— = = 0 ©G.2-2)
= Loy 1-271 )2 ] 1-2"1 :
or, equivalently, -
2+ (dc,+d6, 446, -3)2? +(3-286 -;‘;Gzh
+(36,-1) = 0 (5.2-3)

Stability of the linearized model is guarenteed if all the characteristic
roots lie ipside the uait ciicle in the z-plane, We make the transforma-
" z - ﬁ—f—%' (5.2-4)

which mepe the tatecior of the unit circle in the z-plane onto the lefk half
s-plase. The resulting polynomial in s, :

o 3 B 1c? et e
6,5+ (236, + 56y % + (e 36, - 26y s

+(8-425 -2ig,-2c,) = 0. (5.3-5)

71

u:md:pam-mm mmmmmmm:

dg >0 "1 (5.2-6a)
3%“:*"3” 0 (.2-6b)

- geetg -3%g. -%g.- '
| 8-47G, ~237G,-1 Gy >0 (5.2-6¢c)

"%c’z’%eﬂ“ﬁel'%c’a) ’%33“'4%91‘3%32’%63’
| T | (5.2-64)
Now from the hardware considerations and the VCO algorithm, the gains are
restricted bo the form 7/5-2™, with K a positive integer. Hence all the
loop gains are positive and less than unity 8o that conditions (a), (b), and

(6 #on satiatid. Oomttton (4) stmlifios o
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s (dg.+46) > 4 (5.2-7)

and letting
G, =nfsa®
“- -
Gy = /52
. A
Ga=n[5-z
we have the stabllity condition
.
1 1 1 $ 1 )
>l *r T 1% " €.2-8
zn z.ll SL] 4 zL
8.3 Destgn of the Third Ovder DPLL, Galas

Indesnnlngtheﬂurdodumﬂm“lhmm
frequenoy, mﬁw MMummﬂm&.Md

mnm.'s-
'mm.f = 50 KHs
: mm.'fo = (a+ 1/8)50 KHz
‘maxinum frequency- devistion, Af = 600 B

mmmmmmmm z.smz.smdm
. . -“‘;
EXCe (5.3-1)

fgla_n-zbf 2 ’1._ (5.3-2) -

where B, 15 the bandwidth of the linearized model.

ln'lmo!m the phase oqqnpatdcdmoﬂ:q. (5.3-1). Let the input phase
“ ) . R ‘ .

®, d:?%!‘._pkzwfnlfs ©-3-3)
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where fm is the modulatiag frequency. Then the phase error appearing in
the linearized model of Fig. 5.2-1 is sinusoidal with amplitude A and phase
angle @, where

4 3
ja. _ w (z‘ 4 _
e czs+zz[4-(G +3,+ G,) - 3]+z[3 -4 G.+c )]+(3-G -1)
n'1 T2 U8 LA | 2\ wl zmej‘mfm/fa
(5.3~4)
smce.fm <‘< fs.weobtalnthe approximate result
ICRLN 1IN B (5.3-5)

Combining this result with the design condition of Eq. (5.3-1) yields

Gy = B(2mL Ji)° J035 (5.3-6)

3
UMB'S.fm'NOHz.andfs=50m8.wehave

3

Gy 2 12-107° (5.3-T)
" We shall initially select A
G, = 154:10"% « nf5-212 (5.3-8)

As was the case with the second order DPLL, we cannot obtain an
expression for the limarlzed model m. BL' in terms of the loop
gains. Hence we search the Gl'Gz plane for those third nrder DPLL:s
which satisfy Eq. (5.3-2), which is

B, < 5.05 KHz (5.3-9)

The region of the Gl-Gz plane that must e searched is restricted by the
discrete values of the gainsg and the stability condition. XHaving chosen

Gs.thestnbmtyeondmonbeoomes
«3-10)
A zN [zu 212 4 212
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which is approximately given by
N+M <11. (5.3-11)

(Eq. (5.3-11) is a sufficient condition for Eq.(5.3-10); we note that N= 1,
M = 11 also satisfies Eq. (6.3-10). ) A search of this restricted region
eliminates the values M = 1, 2 as they violate Eq. (5.3-9).

In order to select one third order DPLL from the set of candidates
satisfying the design equations, we introduce the spike model and observe
the various DPLL responses. The third order nonlinear DPLL difference
equation is solved using the FOCAL program appearing in Fig. 5.3-1; Table -
$.3-1 identifies the computer variables with the equation variables. This
program is essentially the same as that used in conjunction with the second
order DPLL, the oaly difference being line 2.20, in which the error signal,
EK, is integrated to give AK, which in turn is integrated to give BX. Then
the VCO phuse, PK, is updated using the proportional signal, G1 # EK, the
integral signal, AK, and the double integral signal, BK. The computations
ellow a transient time equal to one cycle of modulation {250 computations);
also, the initial conditions (VCO phase, and both integrator values) are zero.

lose lock ja response to a constant amplitude, 32-sample spike. While we
have shown that for small phase errors these loops are stable, an input spike
iacreases the phase error and the behavior predicted by the linear model is
no longer valii. It tums out that with Gy = /52 2, the third order DPLL
cannot regain lock after a large disturbance._

In an attempt to find a stzbie third order DPLL, the effect of the double
integration was reduced by changing Gs to w52 13. The result again was
that any combination of Gl and (.-T.2 vielded & DPLL that lost lock in response
to an input spike.

Purther reduction in G, to W/6-2"" produces several DPLL's which
are stable in response to a conatant amplitude, 32-sample duration input
spike. These candidates were first subjected to constant amplitude, var-
fable duration spikes to compare tasir performance with the second order
DPLL. Only one, with N=3, M = 8, showed improvement in that the input

14
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C-FOCAL>» 1969

fi.10
91.20
21.30
2l.40
f1.5e

D285
82.10
a2.11
82.12
82415
02.20
92.25
02.38
0231
8235
02.40
02.45
. @258
02.90
L 3

A LoMaNsTH>»E

S Wu3.14159:S Gl=W/S5%2tN3 S G2=W/5%2tM3 S GIak/S»23L
S PK=03S AK=0;S BK=0

F K==250,1,6063D0 2

QUIT

H=3xFSIN(2+U*200xK/500008)3 ] (K¥<T-K>22.15
EX=<2+E>/2+<2-E>xFCOS(2:WxK/T) /72
EXKsEX®FSIN(K*U/8+H~W%( 1 ~FCOS<W*K/T>))
ERsEK*FSGN(FCOS<K*W/8+PK>)3 GOTO 2.2 .
EX=2*FSIN(K*W/8+H)*FSGNL FCOS<K*@/8+PK>]
AK=AK+G2*EK3 S BK=BK+CK*G3/G23 S PK=PK+Gl*EX+BK+AK
(K)2e952¢352.35

1113F X=051,605T *."

8 )
CK/10-FITR(K/10))2¢9+2¢4,2¢9
=@, 1> FITR(A8+<18/3>*PKISIT »* *
"t"ollf'X'ﬂol:Aﬂ)T " e

L] ﬂ‘!

Qulelgitmgmintntrdvny

Pig. 5.3-1. FOCAL program to solve the third order DPLL eguation
for sinus_oldal modulation plus a spike.
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Program Variahie Equation Variable

PK VCO phase, 6):
'ﬁ AK Integrator value, a,

BR: Second integrator value, bk
EK Error signal, e,
G1 Proportional loop gain, G1
G2 3 Integra? loop gatn, G,
G3 | | Double incegral loop gain, G,

Table 5.3-1. The correspondence between the veariables appearing
in the program of Fig. 5.3-1 and the third order DPLL equation.
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spike duration could be increased to 67 samples before the DPLL began
following the spike. (The second order DPLL began following spikes having
a 49-sample duration.) Fig. 5.3-2 is the VCO phase in response to a 68-
sample duration, constant amplitude spike, and it is clear that the DPLL
follows the spike. If the spike amplitude is permitted to drop to 1 volt,

the DPLL does not follow this spike as displayed in Fig. 5-3-3.

When the spike duration is increased to 70 samples, the VCO phase
responds in an altogether different fashicn. Fig. 5.3-4 is the VCO phase
for a 0.5 volt and 0.2 volt minimum spike amplitude. Notice that now the
DPLL neither follows the spike nor supresses it; instead, positive spikes
are generated. In (3), the DPLL relocks to the sinusoida. modulation with
a + 27 phase error and in the piocess generates a + 21 -area spike. Note
that this spike lasts 110 samples (the input spike lasts 70 samples). In
(b), the DPLL relocks with a 4m pi:ase error, generating a 4w - area spike
lasting 150 samples. What we observe here is that the DPLL loses lock as
a result of both the phase error being increased and the carrier anplitude
belng decreased by the input spike. In the process of regaining lock, positive
spikes are generated, and these spikes have a larger duration and area than
‘ the input spike.

An attempt to further decrease G, brings no improvement. While the

momentary loss of lock phenomenon is iot present, the effect of the double
integral path is so small so that the third order DPLL behaves essentially as
the second order loop. For example, with L=15, M=7, - ¢ 2 input
spike duration can be widened to 47 samples baofore the = . u.ows it;
the second order DPLL wit*> identical proportional loop gain and integral
loop gain follows a 49-sample spike. Other gain combinations yield poorer
performance than the second order DPLL.

Therelore, we conclude that although a third order DPLL has the abil-
ity to suppress more input spikes than a sec nd order DPLL, the third order
DPLL also has the tendency to lose lock in response to wide input spikes.
While the DPLL regains lock, in doing so it generates spikes whose area

may be greater than the area of the input spike.
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VCO PHASE, <&

o

*

N I T T S R S

5p " 100 150 200 * 250

*‘.........'.......00

Q

{
14 ]
’

®ecsvesecngevecce
%

F'g. 5.3-3.- Third order DPLL resp = t- sinusotdal modulation plus a
68-sample, 1 volt minimum amplitude spike.
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S.4 _jardware Implementation
In order t9 experimentally verify the predictions obtained via com-
puter, a third order DPLL having gains

Gl==ﬂ/5-23
8
G2 = n/5-2

1
=T .
G, J5-2

4

was coastructed.

The dhlock diagram illustrating the gain locations and values appears
in 7ig. 5.4-1, where we observe that sce’ing is performed prior to integra-
tion in aorder to prevent saturation from occuring in the adders. In order to
avbid truncation, the registers and associatea adders bave increased ca -
pacity to handle the original ten bits plus the bits introduced by sacling.
Notice, in fact, that had only ten bits been used throughout, the DPLL v.ould
be identical to a second order DPLL as the double integral term is scaled
(shifted) by 11 bits, and would not contribute anything to the output. The
VOO output wh'ch feeds the exclusive—or multiolier is the third most signif-
. icant bit introducing the implicit VOO gain of w/(5/2%).

Although five adders are shown in Fig. 5.4-1, only two actually appear

in the implemented DPLL. One s the output adder A5. which employs 41
bits. The other adder performs the functicns ofAl.Az.Aa.endA4onat1me-
shared basis aud employs 26 bits to accommodate the VCO computatioas.
The time-shared operation m2y be understood by referrirg to Fig. 5.4-2, in
which a schematic diagram and timing diagram appear. The sequeace of e-
vents is as follows:

- AT 1 “Trst-integration): The scaled ervor signal (signal @ )is
added to the contents of the forwarc : -.» integrator (FLI) register
signal () ) and the result is == i in the FLI register, thus
integrating the scaled error sign ..

A'rz (Secoud integration): The Fil register coi..ats are scaled
(signal (T ) and added to the secoad iorward loop integrator
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(FLI 2) register contents (signal @ ) and the result is stored
in the FLI 2 register, thus iniegrating the integrator value, or
double integrating the error sign< ..

AT ¢ (Sum of both integrations): The FLI register contents (signal ®) -
are added to tie FLI 2 register contents (signal (3) ) obtaining
th> sum of integral plus double integral of the error signal. The
result is pot stored anywhere; however, the output register receives
a command to s‘ore the output of the 21-bit adder, which et this
time is the sum of the error signal nlus the integral plus the dcuble
ntegral of the error signal. Also, the D/A converter is made op-
erativ- , generating the output Yi ‘n analog form.

AT , -(VCO computation): The scaled output (signal @ ) is added
to the contents of the VCO register (signal (5) ) and this temp-
orary sum is stored in the VCO register.

AT (VCO computation): The VCO offset ("f2m = w/8) (signal (@ )
is added to the contents of the VOD register (signal (3) ) and the
sum is stored in the VOO register, completitg the VCO phase ~om-
putation. The third bit of the VCO register is used to exclusive-cr
qate the A/D output, generating the next error signal, e, _ ., aud the
cycle begins again.

The time-shared operation rakes it a simple matter to change from
third order to second order operation. All we need do is to move the "load
atpaut register commamd pulse ® to the secondhalfofﬂz. Then the output
regicter cortains the sum of only the proportional plus integral signals, .nd
the DPLL operates as the second order system.

$.5 Qutput Noise
As with the second order DPLL, the third ¢-3.. DPLL output contains
quantization, thermal, truncation, and hamm-. - is5&., HOwever, the hancon-

ic noise /s now obtained by filtering the muitiplier output through a propa -
tional pius integral plus double integrai filter. Also, the D/A converter
truncates eleven bits frcm the 21-bit output register.
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.5_45._1 Quantization Noise
As a result of converting the sampled input signal to a B-bit biaary
word, quantization noise is intrcduced. If the voltages representable by
the B-bit words are spaced by S voits, and the quantization error is assumed
to be independent from sample to sample, the quantization noise has a
power spectral density given by

Gy = s? /127 (5.5-1)
q S

mrs is the sampling period.
The lineari:zed DPLL model, Fig. 5.2-1) has the transfer functioa

H(z) = Y(=)/ #(2) =

%[ (GL*93+93)82 - (%, +93)z+91] [= -.i]

n Y
2 +['47(31*Gz+G3)'3]’2+[3"‘F‘2G1+G2)]’ G =D

(55-2)

Pa‘ztelz“f/fs and f<< fs.thistransferﬁmctionapptmdmtesto

n(e”"f/fs) > mE[Gy o £ (5.5-3)

whic" is8 the transfer function of a differentiatbr. The output quantization

noise is therefore
£

m
N, = g Inlzc';ucl df = (hs/va)z(fmlfs)alla (5.5-4)
-f

uvasohtainodfwﬂne seccnd order DPLL,

5.5.2 Thermal Noise
Since the third order DPLL beinaves a; . .oximately as a difrerentiator,

.n~ output signal-to-noige ratio at Ligh inpu. signai-to-noise ratios is
: tuag, by the results of Sec. 3.8-1, which are identical to those of an ideal
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differentiating discriminator:;

< = 38 2 —;f‘- for constant modulation (5.5-5a)
o “m
s s,
2 - 282 -+ for sinusoidal modulation £-b)
0 m
$.5-3 Truncation Noise

The yesult derived in Sec. 4.5-3 tor the output truncation noise
applies also to the third order DPLL:

N = §s% i1 -2 Mya-2TM (55-5)

H

where M is the number of bits truncated.

$.5-4 Harmonic Noise
¥n the third order CPLL, the harmonics generated at the phase detec-
tor are iiltered by a proportional plus integral plus double integral digital
filter having the transfer function T(2):
1

1
T(z)=9; *+9, -1 Y93~ 12 5-5-7)
i-2 (1-z )

For z = exp uzﬂf/fs) with f << £, the transfer function becomes approx-
imately
) ~ g / (2vi/E)° (5.5-8).

When constant modulation is introduced, *he carmrier fiequency is de-
viated by Af Hz and the third order DPLL trac™. : . frequency deviation
with zero phase lag:

ak -0 = an/fs (3.5-9)

The harmonic dis tortion tanms are identical to those .n the second urder
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DPLL:

- 4 8a =
D= o Temi- i Swk2rdm bf/fs (5.5-10)

and the filtered output amplitude is

G
= 3, 8m | 3
Ip | - w 16m° - *  (274m M;‘fs? Gs-11
producing the ocutput noise
t 4 3 93

Np = 20108 o Ten? -1 (znam sy dp (512

When the carrier is sinusoidally modulated at fm Hz with a modula-
tion index B, the input phase is
®, = Bsink2r: [f (5.5-13)
At this frequency, the traixsfer function {rom input phase to VCO phase
in the linearized model is approximately 1.0, and therefore,

6k ~ e, (5.5-14)

Hence the harmonic distortion terms are identical to those of the second
order DPLL and comtains odd harmonics of the modulating frequency, The
(2n+1)8t harmonic apnears in the output with amplitude

|lp, . |=%2_8m_, 4mB % 5-15
2n+1 w 16m*~1 12n+1( ) [2n(2n+l)fm/fs3r ®. )

and contributes n¢ise in the amount

N = 20log D, ,!/V/7 dB (5.5-12)
D2n+1 an+l

Th's noise component will appear in the output o:dy if the frequency
(2n+1) fm is be.loyw the output low pass filter cutoft frequency.
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5.6 Experimental Results
The third order DPLJ. was tested using the loop gains

proportional loop gatn, G, = W/5-2°
integral loop gain, G2 = w/5-2 8
double integral loop gain, G, = 7/5-°

3
The computer results of Sec. 5.3 show that this set of gains ylelds a
stable DPLIL which momentarily loses !nck in response tc iaput noise
spikes.

The parameters used in the signal-to-noise ni2asurements are:

sampling frequency, fs = 50 {Hz
carrier frequency, fo 53.125 Kiz
modul ating frequency, fs 200 Hz
modulation index, B = 3

]

i

Fig. 5.6-1 is the third order DPLL performance curve for sinusoidal mod-
ulation. A‘afe:v t;bserve that threshold occurs at an input signai-to-noise

_ ratio of 24 dB, whichis § dB worse than the first order DPLL. The rea-
son for this poor performance is found by examining the DPLL output,
where one observes spikes extending aover a full cycle of modulation.
Such spikes are not simply reproductions of the input spikes but rather
are the result of the DPLY, losing lock. When the input noise is increased
the output spike durations increase as the DPLL is thrown farther out of
lock and requires a longer transient to regaii: lock.

The above statements are clearly {1 -.cted in Fig. 5.6-2 where
thera appear photographs of the third orer DP).], output when the input
signal~to-noige l:atio is 13 dB. In (a) we obs -~ ordinary noise spikes
appearing in the sinusoida.. output signal. °« !b;. the oscilloscope sweep
speed has been reduced to ohserve many ... of the output and we ob-
serve that tho DPLL lc jes lock of the sinusoidal inodulation and requiros
about six Jycles of modulation to relock. Note that in addition, we obse.ve
t\:e ordinary noise spikes odcasionally appearing in the cutput. Finally, in
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(a)

1 :ts
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e e

(b)
Fig. 5.6-2. Third order CPLL output with 2t .. sinusvidal modulation
and an input signal-to-noise ratio of i3 dB. In (a), observe input noi- .
spikas being reproduced at the output wrile ir- (L, observe the loss of
lock.
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Fig 5.6-2c. Illustrating third order DP: L losing lock to the sinusoidal
modulation.
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(c), a more severe loss of lock is di. piay=d, with the DPLL requiring

about 34 cycles of modulation to reqain Inck. 1t is precise'y this ioss _
-0t lock which contributes sigrificantly to the output noise and is respon- )
sible for the degradation in performance of the third order DPLL. B

The third order DPLL performance with constant offse  .odulation

B appears in Fig. 5.6-3, where we observe thet threshold occurs at an input

« ignal-to-noise ratio of 17 dB, which is identical. to threshold for ttc

secor}d order DPLL. However the thl;c’. order DPLL occe Icnally loses lock

and th's accourts for the steeper slope below tor " ~ol.. thaa lor the sec-

_-oud crder D.PLL which retains lock even after an inptt spinz Noté‘ forjv
example that at 5 / 'nfm = 15 dB, we have' So/N o, =19 aB for the second
order DPLL and S_ /N_ = 15 dB for the third order L." L.

A computer simulation [14 ] for a third order ar.1log phase-locked
loop predicts 81/ ‘nfm = 15.8 dB at threshdld: experimental results yielded
(14] s,/ nf = 16.3, which s only a 0,2 dB {mprovement over the sec~

.ond orde: analog phase-locked loop. Notice that the same phenomenon
occurs with the digital phase-iocked lgops.-. the third order DPLL provides
no threshuld improvement over the second order DPLL.

. A pho ograph of an output spike appecrs in Fig. 5.5~4, for which tne
input gignal ffequency is deyi3ted 600 Hz above the carmrier fieguency and
tue input isgnal-to-noise ratio is 14 dB. The spike (s negative, as are all
the spikes, since the inout signel f:equenc{' is deviated to its rosilve ex-
t.eme. We may calculate the theoretical acea of the out] it 8'ixe and com-
pare it to .he experimentally obtained value.

whin the DPLL follows an input noisc spik>, ths VCO pnase ir reuses

by 2nraiiens. The DPLL cutput, v, , is releted to the VCO phase, &_, via

k

) 3
ékﬂ -&k = (1,0 27) 7, {5.6-1)

~nd assuining a 3pike occurs during the interval k = 1 (o i1 - K, the sul.ima-
tion of the outprut values is
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Fig. .6-4. A thermal noise aplke appearing in the third order DPLL
output when the carrier frequency is deviated by 600 Hz and
s, /nE_ = 14 dB. )
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Fig. 5.6-5. Illustrating the third order DPLL loss of lock .n response
to an wnput & pike.
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= (s0/n)® @

RS
- 3 ~@_, = -5y = 80 v 6=
k=1 k K+1 1 :

As each Yy represents the output voltage over the entire sampling
penod.rstzousec..theareaunderthewtp\n pike i;

K
T Z Y, = 1.6 mv-sec (5.6-3)
5 k=1
Approximating the spike of Fig. 5.6~-4 by a triangle, the beneath it
is approximately

Area =% (0.8 cm)(3.6 cm)(0.2 v/cm)(5 msec/cm) = 1 .44 mv-sec.
(5.6-4)

in good agreement with the theoretical value.

The DPLL loss of lock is illustrated in Fig. 5.6-5 in which the
oscilloscope sweep is slowed to 50 msec/cm. To put this picture into
proper perspective . recognize that the two small spikes to the left of the
large ones are thermal noise spikes similar to that of Fig. 5.6-4. The
. relative sizes of these spikes clearly demonstrates that the DPLL loss
of lock coruributes significantly to the cutput noise.
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AT

CONCLUSIONS

5

. ”»
.

I

In this concluding chapter, a summary {8 presented of what
has been accomplished by this thesis, and how it compares with
other phase-locked loop analyses and experiments; in addition, a
discussion is given concemning what problems have not yet been
solved.

The all digital phase-locked loop featured in this dissertation
was originated by J. Gardnick, D. L. Schilling, and this author. It
is completely digital in nature; i.e., beyond the A/D converter, all
signals in the DPLL are binary words. Within the DPLL, there is no
conversion back to an analog signal for the purpose of tuning a voltage
controlled oscillator. In fact, there is no oscillator or counter within
the DFLL; instead there is an algorithm to determine the value an osc-
illator would have at the sampling instant. In this way, we generate
the oscillator output only at the time that its value is needed for other
computations.

Another feature of the DPLL presented here is its synchronous,
real-time operation. The s ampling frequency is constant and all the
required arithmetic and logic operations are performed within one sam-
pling period, generating an output sequence whcih is converted to ana-
log form and filtered. An equation (developed in Sec. 2.2) relating the
sampling frequency to the carrier frequency must be satisfied to guar
antee proper DPLL operation. The synchronous operation enables a
- time-shared operation of one DPLL to demodulate several FM signals
simultaneously.

To obtain the real-time operation of the DPLL the VCO is design-
ed so that its output has two possible values, ~orresponding to a square
wave oscillator. This eliminates the need for a binary multiplication at
the phase detector as a multiplication by *1 is accomplished using ex-
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clusive~or gating. While the usa of a square wave VCO simplifies
e DPLL harawaie, i yreasly comglicites tns analy sis of L2 non-
linear, DPLL difference equation. A unique feature of this equation
is that its solution does not converge to zero in response to a carrier
input but approaches a periodic sequence having an average value of
zero. This behavior resuits directiy from the absence of any filtering
immediately after the phase detector multiplier.

The trgnsient response to an unmodulated carrier could be ob-
tained only for the first order DPLL and for the case of no input thermal
noise. The time to gain lock as a function of initial VCO phase and
_ loup gain cannot be expressed in closed form but is presented graphi-
cally. When an integrator is added to the forward path (yielding the
'seoond order DPLL), not even a graphical solution could be developed.
(Compare to [21 ] where a stability analysis could be performed only
for a first order system.) As a result, no information about the acqui-
sition performance of the second and third order DPLL's was obtained.
No attempt was made to pursue such an investigation.

_ The purpose of this work was to design,develop, and analyze a
digital phase-locked loor for FM demodulation and threshold exten-
sion. To obtain information about the DPLL performance at low input
signal-to-noise ratios, a model of an input noise spike was introduced,
and the DPLL equation was solved using a digital computer. This pro-
cedure could not predict where threshold occurs, but could only provide
a comparison between first,second, and third order DPLL's and a differ-
entiating discriminator. Despite this limitation, the s pike model was
successful in finding a second order DPLL which yielded a five dB
threshold extension beyond that of a first order DPLL. This improvement
is obtained for constant offset modulation with a modulating index of 10,
Furthermore, the spike model predicted the momentary loss of lock of
the third order DPLL in res ponse to an input spike, and it was this loss
of lock that deteriorated the third order DPLL performance, producing no
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threshoid exteasion hbevond the sccond erder DPLY for constant
offsei modulaticn anc *meshold deterimation for sinusaidal modu-
lation. This i{s an extremely important "negative result®. In the
past, investigators have discussad ths throsheld axtension of hingher
order loops. Here, we have siown that threshold extension does not

occur.

The experimental results obtained show that the second ordér
DPLL provides as much threshold extension as does an analog phase-
locked loop [14 1. Furthermore, it is demonstrated that no additional
extension is obtained by a third order DPLL, as was previous ly demon-
strated experimentally with analog phase~locked loops [14].

The experimental results also shcw the effect of the number of
bits used on the threshold signal-to-noise ratio. It is found that in
reducing the number of bits in the A/D converter from 10 to 3, threshold
is deteriorated by 5 dB. In addition, if 10-bit arithmetic is used
throughout the DPLL ( thus introducing truncation error), thres hold
suffers a deterioration of 1 dB.

The fact that maximum threshold extension occurs for constant
. offset modulation suggests that further research be conducteu in apply-
ing the DPLL for demodulating M-ary FSK signals. In this respect, the
transient behavior of the DPLL must be investigated when the input fre-
quency deviation apruptly caanyes. Also, the DPLL acquisition perfor-
in tne preéeuue ot noise must be examined.
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APPENDIX 1

Here we consider the transient response to an unmodulated carrier
. by the first order digital phase-locked loop in which the square wave
vCO han-monic::;l are suppressed. The equation desaibhq the system is
Eq. (3.2-1), re@eated here; '

-

s = & -WG/m)snd

K (A1-1)

If 0 <4G/m <3', then any initial @ o &cent W(moc 1o 27 generates a
sequence whosé limit is zero (modulo 277). In general, the sequence has
infinite length; however, for certain isloated values of c‘i:o (which de-
pends on the loop gain G ), the sequence has finite length (i.e., the trans-
ient lasts a finite time). ’ '

Theorem A-1. The sequence generated by Eq. (Al-1) converges to
zero (modulo 27) if 0 <4G/n<2 and 60 == 1 (modulo 27).

Proof; Observe that.be sause of the sin ﬁk term, the sequence is
unchanged by a 2mn, n an integer, shift; hence we consider -W<® o <w
only.

First restrict the gain G so that

0 <4G/n <1

Then the sequence is monotonic decreasing and bounded from below if
0s ‘50 <, while the sequence is monotonic increasing and bounded
from above if -7 < 650 < 0. Hence the sequence converges and it is clear
from Eq. (Al-1) that the limit 18 zero.

Next, consider

1S 4G/n < 2

Then the curves (4G/7) sin & and & intersett at &= 4, in the interval

(-7, ™), as shown in Fig Al~1. Note thatif & = ¢, then & =0, and
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h
[-=¢]

for Kk 2 2; we reach the sready stale after cne iterztion.

.....
133
o

o <9 i the sequence alternates {n sign but decreases in magni-

S
.:g?'_ »

(&, ,, 1 < i8]

For when o<ébo < & , we have ¢l=$°- (4G/rr)sm$° <0 and
-&31 < cbo since (smd‘»o)/&o < 2/(4G/7) as (4G/m) < 2. Asim-
ilar argument holds when - < @o < 0. Hence the sequence [® !
converges and:from Eq. (Al-1), I"ﬁk | —= 0. Therefore, Qk—o 0.

If §1<&ol<ﬂ.therearetworegionstoeonsidet:
¢ <|d |<
19 ¢,
<|® I<
iz Iqool w

at the next iteration:

where $_ is the VCO phase repuired to generate ¢

2

2 1

=8 - (4G/r) sin

The value. §2
then 3’1 = *il ,and §
iterations.

When él'i< li’o | < ¢,, we have 0< l@l l< ¢ ., since the curve sin®
is between th? two straight lines, ¥ and o- §1 (see Fig. Al-2). Hence
 — 0,

k
For Iﬁ’o I> ¢,, we agaln partition this interval at ¢, where

ds shown geometrically in Fig. Al1-2. Note that if 60 =+9
= 0 for k 2 2; i.e., the transient requires o

2.
k

8, = & - (4G/m)sind,

3 2,¢2=:h§1.$k=0,for
k = 3 and the transient consists of three iterations. If ¢, < |¢° | < LI
then ¢ <[4 |<¢,,and & — 0.

This partitioning process is continued inaefinitely yielding the points
Qz.. .o 'ﬁn' o « « given by

Now 60 =+ & generates the sequence 61 -+ P

01,

¢, = (4G/m)sind,
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= - x22
ék ikﬂ (4{;11:}31“,‘“

" wo = ér » then the transient ig {inite, requiring n iterations, while
if tpo 7& in » the treasient requires an infinite number of iterations.
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APPENDIX &

_ FIRST ORDER DPLL TRANSIENT RLSPONSE--

HARMONICS +NCLUDED

In this appendix we prove the assertions made in Sec 3.3 about the
first order DPLL transient where the VCO waveform is a square wave.

Theorem A2-1. If 0 <2G <w/2m and
n-1 ‘ . T
Z  2GcospT[2m + (r-1)7/2mS@ < L 2Gcospm/2m + r/2m  (A2-1)
p=0 p=0
taen
+1,0SkS2m-r

w, = Sq(kv/2m+ ) = { (A2-2)
-1,2m-r <k S2m

where 0Sr < 2m.

Proof: We must show that
0 <km/2m+®, <m for 0Sk=2m-r
nskw/2m + &k <2n for 2m-~r <k = 2m (A2-3)

These conditions may be simplified by observing that the VCO argument,
kv/2m + $k , 13 an increasing function of k. This 1s true hecause

48 = Ge, 2-2G > -7/2m. Hence the conditions of E.. (A2-3) reduce
to four conditions:

S ~»
(1) 0 (90

- 3 < : <y <
M) (2m-r)/am+d, <w (0=r <2m)

< - P <rs
(i) 7S (2m r+l)ﬂ/2m+¢2m_ﬁ_l (0Sr S2m)

(iv) 2m7/2m+ Pom < 27

Proof of these four inequalities is straightforward.
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(1} From the hypothzsis,

r -1 r-1
f:’o 2 N 2Qewmpt/zr e p ~1f2e = & (2Gc0s pit/2m + B/2m) >0
p=0 p=0

(ifv T *Se VOO operation,

2%-3'-1
@ 2mer ™ &o + G (+1)(-2GcospT/2m)
p=0
r 2m-r-1
<X 2Gcos pP/2m + rv/2m - z 2Gcosp™/2m .
p=0 p=0
But 2m-r-~1 2m
2 cospif2m = - X cospWf2m
p=0 p=2m-r
since om
Z cospn/2m = 0.
p=0
Also,
. 2m r
2 cospw/2m = -~ X cosp"/2m .
p=2m-r p=0
Therefore,
r 2m-r-1
2 cospi/2m - X  cospw/2m = 0
p=0 p=0
and
~ . < S
®omer rv/2m n,

(i) We have :

2m-r
®omerr1 “ %0 F GZ (+1){-2cospT/2m)
p=0
r-1 221-r
2 T 2Gcospn/2m+ (r-1)7/2m - & 2G cospT/2m
p=0 p=0
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But, as in {ii}.

r-1 2ner )
%2 cos pr fim - 2 cos P/2m = 0
p=0 p=u

and § 2 (r-1)7/2m, which is identical to (iii).

(iv) We have, using Eq. (A2-4),

. 2m-r+1 2m-1
$n=%, +G (+1)(~2cospr/?m) + G &  (~1)(-2cospT/Zm)
p=0 p=2m-r :

r 2m-r+1 2m-1

<rnf2m + & 2Gcosp/2m - & 2Gcospn/2m+ X 2GCOspT/2m
p=0 =0 p=2m-r
2m-1 2m-~1)

= rm/2m+ X 2Gcospr/2m < rv/2m + Z T/2m

p=2m-~r p=2m-r

rvf2m + ro/2m < 2T,

proving (iv) and the theorem.

Theorem A2-2. Witk the hypotheses of Th. A2-1, 0 < $2m < @o.

Proof: We have

2m-r 2m-1
Ap=8,+G T (1)(-2cospn/2m)+G T  (-1)(-2cospT/2m)
p=0 p=2m=-1+1

. r-1
=&, - 2G - 4G 2 cospn/2m
n=1
r-1 .
Since 2 cos pP7/2m > 0, we have immediately ®2m < CPO.
p=1 :

Using Eq. (A2-1),
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r~1 r-1
62 2 L 2Goospn/2m + (r-1)7/2m - 2G - 4G Z cospn/2m
m
p=0 p=1
r-1 -
= Z [n/2m - 2Gcosprfam ] > O,
p=1

since 2G < W/2m.

Theorem A2-3. If 0 < 2G < w/2m and
r r-1
-@t)/2m - Z 2Goospn/am < _<-rn/2m - Z 2Gcospn/2m (A2-6)
« p=0 p=0

audvo 2 - w, then

-1, 0=Sk<r
'k_-=

+1, r+1S k< 2m (A2-7)

where 0 S r S 2m-1. _
Prcof: As in Th. A2-1, we need only prove the fallowing:

-n< §
@) ~v=<9d
(i) rv/2m + 6: <0
"if) 0 < (r+1)W/2m + & i
<
(v) 2m7/2m + &, <.

The proofs are straightforward:
(1) is part of: the hypotheses.

r-1
(i1) @t =0 +G 2 (-1)(-2cospn/2m) < -rW/2m, directly from Eq. (A2-6).
p=0
T
) & =8 +G Z (-1)(-2cospn/2m) = - (r+1)T/2m, directly from
: p=0
Eq. (A2-6).

200



r 2m-1
@) &, =8 +G L(-1)(-2cospn/2m) + L (+1)(-2cospn/2m)

p=0 _ P+l
r-1 r 2m-1
<-rn/2m - 2G T cospW/3m + 2G L cospn/2m - 2G L cosp/2m
p=0 p=0 p=r+l

by Eq. (A2-6). Now

r-1 : r
-2G T cospt/2m + 2G L cospr/2m = 2Gcosrw/2m
p=0 p=0
and * 2mel £
- Z cospnf2m = I cospm/2m
p=r+l1 =1
Therefore,

r
62m < -ru/2m + 2Gcosrn/2m + 2G L cospn/2m
S

r
= L [(-%/2m+2Gcospr/2m ] + 3Gcos rv/2m
p=1

Now, since 2G < W/2m, the summation term is negative, so that

Vom < 2Gcosrn/2m S w/2a

proving (iv) and the theorem.

Theorem A2-4. With the hypotheses of Th. A2-3, $o< Q’zm < 2G.

Proof:
r 2m-1
sz =% +G L (-1){-2cospr/2m) + G Z  (+1){-2cospw/2m)
p=0 p=r+l Y

r
-ﬁo + 2G + 4G L cospn/2m
pjsl
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r
Since I cospw/2m > 0, we have immediately & _ > & .
p=1 _ 2m o

U>ing Eq. (A2-6),
-1 r

$2m < <raf2m ~ Z 2Gcospw/2m + 2G + 4G & cospr/2m
p=1l

r
= 2 ([-7/2m+2Gcospn/2m ] + 2Gcosr7/2m

=1

< cosrwf2m. S 2G.

202



APPENDIX 3

FIRST ORDER DPLL BANDWIDTH

In this appendix, we calculate the bandwidth oi the linearized
first order DPLL, having transfer function

) = b (a3-1)
1-(1-4G/m)z

To ontain the frequency characteristec, we set

z = ol ¥/t (A3-2)
wkere fs is the sampling frequency. The bandwidth, BL.isthefre-
quency for which

12 Bfls) | = 1) W3 A3-3;
or, equivalently,
11-(1-46/me ¥ B/t |2 = 20a6/m)? a3
Now,
11 - (1 -4G/m)e ¥ BL/Ex |2
= 4(1-8G/m)uin® B JE_+ (4G/m)’ (A3-5)

and 1f 8G/T<<1, then "B, /f <<w/2 and

4(1-8G/m sin’ B, ff_+ uG/m)® ~ (awm /1% + sG/m)®  @3-6)
and we obtain from Eq. (A3-4)
B~ 2/n%)1,G (A3-7)

The shove rasult has a graphical interpretation. The quantity
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d = 11-(1-4G/n)e"°| = leje—(1-4G/“)|

is the distance between 2 = 1-4G/" and z = l? as shown in

Fig. A3-1. We are looking for @ such that d =v/2(4G/m). Now if

4G [n<< 1, then near 2 = 1, the unit circle and a vertical line passing
through z = 1 are approximately identical, as illustrated in Fig. A3-2.
Hence to find 9, we may construct an isosceles right triangle as shown,
and t-e arc subtended by @ is approximately 4G/w radians. Since

6= 2n corresponds to f=fs.thebandwldthis

N - = 2
B~ (5/2M4G/™) = (2/7)E,G,

as before.

Note that using the vertical line in lieu of the unit circle results
in a bandwidth which is smaller than the exact value. This is clear
from Fig. A3-2.
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Fig. A3-2. The situation in the neighborhood of 2z = 1 when
G/ << 1.
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II. A New Area of Investigation
The Phase Lock:d Loop employs a linear loop filter to process

the phase detected signal before correcting the frequency of the
voltage controlled oscillator.

We feel that the output of the phase detector can be processed
nonlinearly thereby obtaining a "better” estimate of the phase of
the incoming signals. Nonlinear processors are in general diffi-
cult to construct and may even require the use of a digital computer.
Schilling and Ucci have determined a relatively simple nonlinear
processor.

Schilling and Uccl are currently analyzing the response of a
PLL which uses an adaptive delta modulator as a nonlinear processor.
The delta modulator can be used to obtain an accurate estimate of the
phase and is easily integrated, thereby resulting in an efficient low
volume, low cost device.

A detailed discussion of this device will b. presented in the final
report.



